]> git.sesse.net Git - nageru/blob - mixer.cpp
Add a printout of mlockall() memory used, from bitter experience :-)
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30 #include <sys/time.h>
31 #include <sys/resource.h>
32
33 #include "bmusb/bmusb.h"
34 #include "context.h"
35 #include "decklink_capture.h"
36 #include "defs.h"
37 #include "fake_capture.h"
38 #include "flags.h"
39 #include "video_encoder.h"
40 #include "pbo_frame_allocator.h"
41 #include "ref_counted_gl_sync.h"
42 #include "timebase.h"
43
44 class QOpenGLContext;
45
46 using namespace movit;
47 using namespace std;
48 using namespace std::placeholders;
49
50 Mixer *global_mixer = nullptr;
51 bool uses_mlock = false;
52
53 namespace {
54
55 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
56 {
57         assert(in_channels >= out_channels);
58         for (size_t i = 0; i < num_samples; ++i) {
59                 for (size_t j = 0; j < out_channels; ++j) {
60                         uint32_t s1 = *src++;
61                         uint32_t s2 = *src++;
62                         uint32_t s3 = *src++;
63                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
64                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
65                 }
66                 src += 3 * (in_channels - out_channels);
67         }
68 }
69
70 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
71 {
72         assert(in_channels >= out_channels);
73         for (size_t i = 0; i < num_samples; ++i) {
74                 for (size_t j = 0; j < out_channels; ++j) {
75                         // Note: Assumes little-endian.
76                         int32_t s = *(int32_t *)src;
77                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
78                         src += 4;
79                 }
80                 src += 4 * (in_channels - out_channels);
81         }
82 }
83
84 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
85 {
86         if (interlaced) {
87                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
88                         input_state->buffered_frames[card_index][frame_num] =
89                                 input_state->buffered_frames[card_index][frame_num - 1];
90                 }
91                 input_state->buffered_frames[card_index][0] = { frame, field_num };
92         } else {
93                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
94                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
95                 }
96         }
97 }
98
99 }  // namespace
100
101 void QueueLengthPolicy::update_policy(int queue_length)
102 {
103         if (queue_length < 0) {  // Starvation.
104                 if (been_at_safe_point_since_last_starvation && safe_queue_length < 5) {
105                         ++safe_queue_length;
106                         fprintf(stderr, "Card %u: Starvation, increasing safe limit to %u frames\n",
107                                 card_index, safe_queue_length);
108                 }
109                 frames_with_at_least_one = 0;
110                 been_at_safe_point_since_last_starvation = false;
111                 return;
112         }
113         if (queue_length > 0) {
114                 if (queue_length >= int(safe_queue_length)) {
115                         been_at_safe_point_since_last_starvation = true;
116                 }
117                 if (++frames_with_at_least_one >= 1000 && safe_queue_length > 0) {
118                         --safe_queue_length;
119                         fprintf(stderr, "Card %u: Spare frames for more than 1000 frames, reducing safe limit to %u frames\n",
120                                 card_index, safe_queue_length);
121                         frames_with_at_least_one = 0;
122                 }
123         } else {
124                 frames_with_at_least_one = 0;
125         }
126 }
127
128 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
129         : httpd(),
130           num_cards(num_cards),
131           mixer_surface(create_surface(format)),
132           h264_encoder_surface(create_surface(format)),
133           correlation(OUTPUT_FREQUENCY),
134           level_compressor(OUTPUT_FREQUENCY),
135           limiter(OUTPUT_FREQUENCY),
136           compressor(OUTPUT_FREQUENCY)
137 {
138         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
139         check_error();
140
141         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
142         // will be halved when sampling them, and we need to compensate here.
143         movit_texel_subpixel_precision /= 2.0;
144
145         resource_pool.reset(new ResourcePool);
146         theme.reset(new Theme(global_flags.theme_filename.c_str(), resource_pool.get(), num_cards));
147         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
148                 output_channel[i].parent = this;
149                 output_channel[i].channel = i;
150         }
151
152         ImageFormat inout_format;
153         inout_format.color_space = COLORSPACE_sRGB;
154         inout_format.gamma_curve = GAMMA_sRGB;
155
156         // Display chain; shows the live output produced by the main chain (its RGBA version).
157         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
158         check_error();
159         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
160         display_chain->add_input(display_input);
161         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
162         display_chain->set_dither_bits(0);  // Don't bother.
163         display_chain->finalize();
164
165         video_encoder.reset(new VideoEncoder(resource_pool.get(), h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
166
167         // Start listening for clients only once VideoEncoder has written its header, if any.
168         httpd.start(9095);
169
170         // First try initializing the fake devices, then PCI devices, then USB,
171         // until we have the desired number of cards.
172         unsigned num_pci_devices = 0, num_usb_devices = 0;
173         unsigned card_index = 0;
174
175         assert(global_flags.num_fake_cards >= 0);  // Enforced in flags.cpp.
176         unsigned num_fake_cards = global_flags.num_fake_cards;
177
178         assert(num_fake_cards <= num_cards);  // Enforced in flags.cpp.
179         for ( ; card_index < num_fake_cards; ++card_index) {
180                 configure_card(card_index, format, new FakeCapture(card_index));
181         }
182
183         if (global_flags.num_fake_cards > 0) {
184                 fprintf(stderr, "Initialized %d fake cards.\n", global_flags.num_fake_cards);
185         }
186
187         if (card_index < num_cards) {
188                 IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
189                 if (decklink_iterator != nullptr) {
190                         for ( ; card_index < num_cards; ++card_index) {
191                                 IDeckLink *decklink;
192                                 if (decklink_iterator->Next(&decklink) != S_OK) {
193                                         break;
194                                 }
195
196                                 configure_card(card_index, format, new DeckLinkCapture(decklink, card_index - num_fake_cards));
197                                 ++num_pci_devices;
198                         }
199                         decklink_iterator->Release();
200                         fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
201                 } else {
202                         fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
203                 }
204         }
205         for ( ; card_index < num_cards; ++card_index) {
206                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices - num_fake_cards));
207                 ++num_usb_devices;
208         }
209
210         if (num_usb_devices > 0) {
211                 has_bmusb_thread = true;
212                 BMUSBCapture::start_bm_thread();
213         }
214
215         for (card_index = 0; card_index < num_cards; ++card_index) {
216                 cards[card_index].queue_length_policy.reset(card_index);
217                 cards[card_index].capture->start_bm_capture();
218         }
219
220         // Set up stuff for NV12 conversion.
221
222         // Cb/Cr shader.
223         string cbcr_vert_shader =
224                 "#version 130 \n"
225                 " \n"
226                 "in vec2 position; \n"
227                 "in vec2 texcoord; \n"
228                 "out vec2 tc0; \n"
229                 "uniform vec2 foo_chroma_offset_0; \n"
230                 " \n"
231                 "void main() \n"
232                 "{ \n"
233                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
234                 "    // \n"
235                 "    //   2.000  0.000  0.000 -1.000 \n"
236                 "    //   0.000  2.000  0.000 -1.000 \n"
237                 "    //   0.000  0.000 -2.000 -1.000 \n"
238                 "    //   0.000  0.000  0.000  1.000 \n"
239                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
240                 "    vec2 flipped_tc = texcoord; \n"
241                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
242                 "} \n";
243         string cbcr_frag_shader =
244                 "#version 130 \n"
245                 "in vec2 tc0; \n"
246                 "uniform sampler2D cbcr_tex; \n"
247                 "out vec4 FragColor; \n"
248                 "void main() { \n"
249                 "    FragColor = texture(cbcr_tex, tc0); \n"
250                 "} \n";
251         vector<string> frag_shader_outputs;
252         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
253
254         float vertices[] = {
255                 0.0f, 2.0f,
256                 0.0f, 0.0f,
257                 2.0f, 0.0f
258         };
259         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
260         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
261         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
262
263         r128.init(2, OUTPUT_FREQUENCY);
264         r128.integr_start();
265
266         locut.init(FILTER_HPF, 2);
267
268         // If --flat-audio is given, turn off everything that messes with the sound,
269         // except the final makeup gain.
270         if (global_flags.flat_audio) {
271                 set_locut_enabled(false);
272                 set_gain_staging_auto(false);
273                 set_limiter_enabled(false);
274                 set_compressor_enabled(false);
275         }
276
277         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
278         // and there's a limit to how important the peak meter is.
279         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
280
281         if (global_flags.enable_alsa_output) {
282                 alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
283         }
284 }
285
286 Mixer::~Mixer()
287 {
288         resource_pool->release_glsl_program(cbcr_program_num);
289         glDeleteBuffers(1, &cbcr_vbo);
290         if (has_bmusb_thread) {
291                 BMUSBCapture::stop_bm_thread();
292         }
293
294         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
295                 {
296                         unique_lock<mutex> lock(bmusb_mutex);
297                         cards[card_index].should_quit = true;  // Unblock thread.
298                         cards[card_index].new_frames_changed.notify_all();
299                 }
300                 cards[card_index].capture->stop_dequeue_thread();
301         }
302
303         video_encoder.reset(nullptr);
304 }
305
306 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
307 {
308         printf("Configuring card %d...\n", card_index);
309
310         CaptureCard *card = &cards[card_index];
311         card->capture = capture;
312         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
313         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
314         card->capture->set_video_frame_allocator(card->frame_allocator.get());
315         card->surface = create_surface(format);
316         card->resampling_queue.reset(new ResamplingQueue(card_index, OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
317         card->capture->configure_card();
318 }
319
320
321 namespace {
322
323 int unwrap_timecode(uint16_t current_wrapped, int last)
324 {
325         uint16_t last_wrapped = last & 0xffff;
326         if (current_wrapped > last_wrapped) {
327                 return (last & ~0xffff) | current_wrapped;
328         } else {
329                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
330         }
331 }
332
333 float find_peak(const float *samples, size_t num_samples)
334 {
335         float m = fabs(samples[0]);
336         for (size_t i = 1; i < num_samples; ++i) {
337                 m = max(m, fabs(samples[i]));
338         }
339         return m;
340 }
341
342 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
343 {
344         size_t num_samples = in.size() / 2;
345         out_l->resize(num_samples);
346         out_r->resize(num_samples);
347
348         const float *inptr = in.data();
349         float *lptr = &(*out_l)[0];
350         float *rptr = &(*out_r)[0];
351         for (size_t i = 0; i < num_samples; ++i) {
352                 *lptr++ = *inptr++;
353                 *rptr++ = *inptr++;
354         }
355 }
356
357 }  // namespace
358
359 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
360                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
361                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
362 {
363         CaptureCard *card = &cards[card_index];
364
365         if (is_mode_scanning[card_index]) {
366                 if (video_format.has_signal) {
367                         // Found a stable signal, so stop scanning.
368                         is_mode_scanning[card_index] = false;
369                 } else {
370                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
371                         timespec now;
372                         clock_gettime(CLOCK_MONOTONIC, &now);
373                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
374                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
375                         if (sec_since_last_switch > switch_time_s) {
376                                 // It isn't this mode; try the next one.
377                                 mode_scanlist_index[card_index]++;
378                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
379                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
380                                 last_mode_scan_change[card_index] = now;
381                         }
382                 }
383         }
384
385         int64_t frame_length = int64_t(TIMEBASE) * video_format.frame_rate_den / video_format.frame_rate_nom;
386         assert(frame_length > 0);
387
388         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
389         if (num_samples > OUTPUT_FREQUENCY / 10) {
390                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
391                         card_index, int(audio_frame.len), int(audio_offset),
392                         timecode, int(video_frame.len), int(video_offset), video_format.id);
393                 if (video_frame.owner) {
394                         video_frame.owner->release_frame(video_frame);
395                 }
396                 if (audio_frame.owner) {
397                         audio_frame.owner->release_frame(audio_frame);
398                 }
399                 return;
400         }
401
402         int64_t local_pts = card->next_local_pts;
403         int dropped_frames = 0;
404         if (card->last_timecode != -1) {
405                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
406         }
407
408         // Convert the audio to stereo fp32 and add it.
409         vector<float> audio;
410         audio.resize(num_samples * 2);
411         switch (audio_format.bits_per_sample) {
412         case 0:
413                 assert(num_samples == 0);
414                 break;
415         case 24:
416                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
417                 break;
418         case 32:
419                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
420                 break;
421         default:
422                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
423                 assert(false);
424         }
425
426         // Add the audio.
427         {
428                 unique_lock<mutex> lock(card->audio_mutex);
429
430                 // Number of samples per frame if we need to insert silence.
431                 // (Could be nonintegral, but resampling will save us then.)
432                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
433
434                 if (dropped_frames > MAX_FPS * 2) {
435                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
436                                 card_index, card->last_timecode, timecode);
437                         card->resampling_queue.reset(new ResamplingQueue(card_index, OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
438                         dropped_frames = 0;
439                 } else if (dropped_frames > 0) {
440                         // Insert silence as needed.
441                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
442                                 card_index, dropped_frames, timecode);
443                         vector<float> silence(silence_samples * 2, 0.0f);
444                         for (int i = 0; i < dropped_frames; ++i) {
445                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
446                                 // Note that if the format changed in the meantime, we have
447                                 // no way of detecting that; we just have to assume the frame length
448                                 // is always the same.
449                                 local_pts += frame_length;
450                         }
451                 }
452                 if (num_samples == 0) {
453                         audio.resize(silence_samples * 2);
454                         num_samples = silence_samples;
455                 }
456                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
457                 card->next_local_pts = local_pts + frame_length;
458         }
459
460         card->last_timecode = timecode;
461
462         // Done with the audio, so release it.
463         if (audio_frame.owner) {
464                 audio_frame.owner->release_frame(audio_frame);
465         }
466
467         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
468         if (video_frame.len - video_offset == 0 ||
469             video_frame.len - video_offset != expected_length) {
470                 if (video_frame.len != 0) {
471                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
472                                 card_index, video_frame.len - video_offset, expected_length);
473                 }
474                 if (video_frame.owner) {
475                         video_frame.owner->release_frame(video_frame);
476                 }
477
478                 // Still send on the information that we _had_ a frame, even though it's corrupted,
479                 // so that pts can go up accordingly.
480                 {
481                         unique_lock<mutex> lock(bmusb_mutex);
482                         CaptureCard::NewFrame new_frame;
483                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
484                         new_frame.length = frame_length;
485                         new_frame.interlaced = false;
486                         new_frame.dropped_frames = dropped_frames;
487                         card->new_frames.push(move(new_frame));
488                         card->new_frames_changed.notify_all();
489                 }
490                 return;
491         }
492
493         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
494
495         unsigned num_fields = video_format.interlaced ? 2 : 1;
496         timespec frame_upload_start;
497         if (video_format.interlaced) {
498                 // Send the two fields along as separate frames; the other side will need to add
499                 // a deinterlacer to actually get this right.
500                 assert(video_format.height % 2 == 0);
501                 video_format.height /= 2;
502                 assert(frame_length % 2 == 0);
503                 frame_length /= 2;
504                 num_fields = 2;
505                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
506         }
507         userdata->last_interlaced = video_format.interlaced;
508         userdata->last_has_signal = video_format.has_signal;
509         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
510         userdata->last_frame_rate_den = video_format.frame_rate_den;
511         RefCountedFrame frame(video_frame);
512
513         // Upload the textures.
514         size_t cbcr_width = video_format.width / 2;
515         size_t cbcr_offset = video_offset / 2;
516         size_t y_offset = video_frame.size / 2 + video_offset / 2;
517
518         for (unsigned field = 0; field < num_fields; ++field) {
519                 // Put the actual texture upload in a lambda that is executed in the main thread.
520                 // It is entirely possible to do this in the same thread (and it might even be
521                 // faster, depending on the GPU and driver), but it appears to be trickling
522                 // driver bugs very easily.
523                 //
524                 // Note that this means we must hold on to the actual frame data in <userdata>
525                 // until the upload command is run, but we hold on to <frame> much longer than that
526                 // (in fact, all the way until we no longer use the texture in rendering).
527                 auto upload_func = [field, video_format, y_offset, cbcr_offset, cbcr_width, userdata]() {
528                         unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
529
530                         if (userdata->tex_y[field] == 0 ||
531                             userdata->tex_cbcr[field] == 0 ||
532                             video_format.width != userdata->last_width[field] ||
533                             video_format.height != userdata->last_height[field]) {
534                                 // We changed resolution since last use of this texture, so we need to create
535                                 // a new object. Note that this each card has its own PBOFrameAllocator,
536                                 // we don't need to worry about these flip-flopping between resolutions.
537                                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
538                                 check_error();
539                                 glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
540                                 check_error();
541                                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
542                                 check_error();
543                                 glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
544                                 check_error();
545                                 userdata->last_width[field] = video_format.width;
546                                 userdata->last_height[field] = video_format.height;
547                         }
548
549                         GLuint pbo = userdata->pbo;
550                         check_error();
551                         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
552                         check_error();
553
554                         size_t field_y_start = y_offset + video_format.width * field_start_line;
555                         size_t field_cbcr_start = cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t);
556
557                         if (global_flags.flush_pbos) {
558                                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_y_start, video_format.width * video_format.height);
559                                 check_error();
560                                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_cbcr_start, cbcr_width * video_format.height * sizeof(uint16_t));
561                                 check_error();
562                         }
563
564                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
565                         check_error();
566                         glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_cbcr_start));
567                         check_error();
568                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
569                         check_error();
570                         glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_y_start));
571                         check_error();
572                         glBindTexture(GL_TEXTURE_2D, 0);
573                         check_error();
574                         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
575                         check_error();
576                 };
577
578                 if (field == 1) {
579                         // Don't upload the second field as fast as we can; wait until
580                         // the field time has approximately passed. (Otherwise, we could
581                         // get timing jitter against the other sources, and possibly also
582                         // against the video display, although the latter is not as critical.)
583                         // This requires our system clock to be reasonably close to the
584                         // video clock, but that's not an unreasonable assumption.
585                         timespec second_field_start;
586                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
587                                 frame_length * 1000000000 / TIMEBASE;
588                         second_field_start.tv_sec = frame_upload_start.tv_sec +
589                                 second_field_start.tv_nsec / 1000000000;
590                         second_field_start.tv_nsec %= 1000000000;
591
592                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
593                                                &second_field_start, nullptr) == -1 &&
594                                errno == EINTR) ;
595                 }
596
597                 {
598                         unique_lock<mutex> lock(bmusb_mutex);
599                         CaptureCard::NewFrame new_frame;
600                         new_frame.frame = frame;
601                         new_frame.length = frame_length;
602                         new_frame.field = field;
603                         new_frame.interlaced = video_format.interlaced;
604                         new_frame.upload_func = upload_func;
605                         new_frame.dropped_frames = dropped_frames;
606                         card->new_frames.push(move(new_frame));
607                         card->new_frames_changed.notify_all();
608                 }
609         }
610 }
611
612 void Mixer::thread_func()
613 {
614         eglBindAPI(EGL_OPENGL_API);
615         QOpenGLContext *context = create_context(mixer_surface);
616         if (!make_current(context, mixer_surface)) {
617                 printf("oops\n");
618                 exit(1);
619         }
620
621         struct timespec start, now;
622         clock_gettime(CLOCK_MONOTONIC, &start);
623
624         int frame = 0;
625         int stats_dropped_frames = 0;
626
627         while (!should_quit) {
628                 CaptureCard::NewFrame new_frames[MAX_CARDS];
629                 bool has_new_frame[MAX_CARDS] = { false };
630                 int num_samples[MAX_CARDS] = { 0 };
631
632                 // TODO: Add a timeout.
633                 unsigned master_card_index = theme->map_signal(master_clock_channel);
634                 assert(master_card_index < num_cards);
635
636                 get_one_frame_from_each_card(master_card_index, new_frames, has_new_frame, num_samples);
637                 schedule_audio_resampling_tasks(new_frames[master_card_index].dropped_frames, num_samples[master_card_index], new_frames[master_card_index].length);
638                 stats_dropped_frames += new_frames[master_card_index].dropped_frames;
639                 send_audio_level_callback();
640
641                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
642                         if (card_index == master_card_index || !has_new_frame[card_index]) {
643                                 continue;
644                         }
645                         if (new_frames[card_index].frame->len == 0) {
646                                 ++new_frames[card_index].dropped_frames;
647                         }
648                         if (new_frames[card_index].dropped_frames > 0) {
649                                 printf("Card %u dropped %d frames before this\n",
650                                         card_index, int(new_frames[card_index].dropped_frames));
651                         }
652                 }
653
654                 // If the first card is reporting a corrupted or otherwise dropped frame,
655                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
656                 if (new_frames[master_card_index].frame->len == 0) {
657                         ++stats_dropped_frames;
658                         pts_int += new_frames[master_card_index].length;
659                         continue;
660                 }
661
662                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
663                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
664                                 continue;
665
666                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
667                         assert(new_frame->frame != nullptr);
668                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
669                         check_error();
670
671                         // The new texture might need uploading before use.
672                         if (new_frame->upload_func) {
673                                 new_frame->upload_func();
674                                 new_frame->upload_func = nullptr;
675                         }
676                 }
677
678                 int64_t duration = new_frames[master_card_index].length;
679                 render_one_frame(duration);
680                 ++frame;
681                 pts_int += duration;
682
683                 clock_gettime(CLOCK_MONOTONIC, &now);
684                 double elapsed = now.tv_sec - start.tv_sec +
685                         1e-9 * (now.tv_nsec - start.tv_nsec);
686                 if (frame % 100 == 0) {
687                 // check our memory usage, to see if we are close to our mlockall()
688                 // limit (if at all set).
689                 rusage used;
690                 if (getrusage(RUSAGE_SELF, &used) == -1) {
691                         perror("getrusage(RUSAGE_SELF)");
692                         assert(false);
693                 }
694
695                 rlimit limit;
696                 if (getrlimit(RLIMIT_MEMLOCK, &limit) == -1) {
697                         perror("getrlimit(RLIMIT_MEMLOCK)");
698                         assert(false);
699                 }
700
701                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)",
702                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
703                                 1e3 * elapsed / frame);
704                 //      chain->print_phase_timing();
705
706                         if (uses_mlock) {
707                                 // Check our memory usage, to see if we are close to our mlockall()
708                                 // limit (if at all set).
709                                 rusage used;
710                                 if (getrusage(RUSAGE_SELF, &used) == -1) {
711                                         perror("getrusage(RUSAGE_SELF)");
712                                         assert(false);
713                                 }
714
715                                 rlimit limit;
716                                 if (getrlimit(RLIMIT_MEMLOCK, &limit) == -1) {
717                                         perror("getrlimit(RLIMIT_MEMLOCK)");
718                                         assert(false);
719                                 }
720
721                                 printf(", using %ld / %ld MB lockable memory (%.1f%%)",
722                                         long(used.ru_maxrss / 1024),
723                                         long(limit.rlim_cur / 1048576),
724                                         float(100.0 * (used.ru_maxrss * 1024.0) / limit.rlim_cur));
725                         }
726
727                         printf("\n");
728                 }
729
730
731                 if (should_cut.exchange(false)) {  // Test and clear.
732                         video_encoder->do_cut(frame);
733                 }
734
735 #if 0
736                 // Reset every 100 frames, so that local variations in frame times
737                 // (especially for the first few frames, when the shaders are
738                 // compiled etc.) don't make it hard to measure for the entire
739                 // remaining duration of the program.
740                 if (frame == 10000) {
741                         frame = 0;
742                         start = now;
743                 }
744 #endif
745                 check_error();
746         }
747
748         resource_pool->clean_context();
749 }
750
751 void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_CARDS], bool has_new_frame[MAX_CARDS], int num_samples[MAX_CARDS])
752 {
753         // The first card is the master timer, so wait for it to have a new frame.
754         unique_lock<mutex> lock(bmusb_mutex);
755         cards[master_card_index].new_frames_changed.wait(lock, [this, master_card_index]{ return !cards[master_card_index].new_frames.empty(); });
756
757         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
758                 CaptureCard *card = &cards[card_index];
759                 if (card->new_frames.empty()) {
760                         assert(card_index != master_card_index);
761                         card->queue_length_policy.update_policy(-1);
762                         continue;
763                 }
764                 new_frames[card_index] = move(card->new_frames.front());
765                 has_new_frame[card_index] = true;
766                 card->new_frames.pop();
767                 card->new_frames_changed.notify_all();
768
769                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
770                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
771                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
772                 assert(num_samples[card_index] >= 0);
773
774                 if (card_index == master_card_index) {
775                         // We don't use the queue length policy for the master card,
776                         // but we will if it stops being the master. Thus, clear out
777                         // the policy in case we switch in the future.
778                         card->queue_length_policy.reset(card_index);
779                 } else {
780                         // If we have excess frames compared to the policy for this card,
781                         // drop frames from the head.
782                         card->queue_length_policy.update_policy(card->new_frames.size());
783                         while (card->new_frames.size() > card->queue_length_policy.get_safe_queue_length()) {
784                                 card->new_frames.pop();
785                         }
786                 }
787         }
788 }
789
790 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame)
791 {
792         // Resample the audio as needed, including from previously dropped frames.
793         assert(num_cards > 0);
794         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
795                 {
796                         // Signal to the audio thread to process this frame.
797                         unique_lock<mutex> lock(audio_mutex);
798                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame});
799                         audio_task_queue_changed.notify_one();
800                 }
801                 if (frame_num != dropped_frames) {
802                         // For dropped frames, increase the pts. Note that if the format changed
803                         // in the meantime, we have no way of detecting that; we just have to
804                         // assume the frame length is always the same.
805                         pts_int += length_per_frame;
806                 }
807         }
808 }
809
810 void Mixer::render_one_frame(int64_t duration)
811 {
812         // Get the main chain from the theme, and set its state immediately.
813         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
814         EffectChain *chain = theme_main_chain.chain;
815         theme_main_chain.setup_chain();
816         //theme_main_chain.chain->enable_phase_timing(true);
817
818         GLuint y_tex, cbcr_tex;
819         bool got_frame = video_encoder->begin_frame(&y_tex, &cbcr_tex);
820         assert(got_frame);
821
822         // Render main chain.
823         GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
824         GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
825         GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
826         check_error();
827         chain->render_to_fbo(fbo, WIDTH, HEIGHT);
828         resource_pool->release_fbo(fbo);
829
830         subsample_chroma(cbcr_full_tex, cbcr_tex);
831         resource_pool->release_2d_texture(cbcr_full_tex);
832
833         // Set the right state for rgba_tex.
834         glBindFramebuffer(GL_FRAMEBUFFER, 0);
835         glBindTexture(GL_TEXTURE_2D, rgba_tex);
836         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
837         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
838         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
839
840         const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
841         RefCountedGLsync fence = video_encoder->end_frame(pts_int + av_delay, duration, theme_main_chain.input_frames);
842
843         // The live frame just shows the RGBA texture we just rendered.
844         // It owns rgba_tex now.
845         DisplayFrame live_frame;
846         live_frame.chain = display_chain.get();
847         live_frame.setup_chain = [this, rgba_tex]{
848                 display_input->set_texture_num(rgba_tex);
849         };
850         live_frame.ready_fence = fence;
851         live_frame.input_frames = {};
852         live_frame.temp_textures = { rgba_tex };
853         output_channel[OUTPUT_LIVE].output_frame(live_frame);
854
855         // Set up preview and any additional channels.
856         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
857                 DisplayFrame display_frame;
858                 Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
859                 display_frame.chain = chain.chain;
860                 display_frame.setup_chain = chain.setup_chain;
861                 display_frame.ready_fence = fence;
862                 display_frame.input_frames = chain.input_frames;
863                 display_frame.temp_textures = {};
864                 output_channel[i].output_frame(display_frame);
865         }
866 }
867
868 void Mixer::send_audio_level_callback()
869 {
870         if (audio_level_callback == nullptr) {
871                 return;
872         }
873
874         unique_lock<mutex> lock(compressor_mutex);
875         double loudness_s = r128.loudness_S();
876         double loudness_i = r128.integrated();
877         double loudness_range_low = r128.range_min();
878         double loudness_range_high = r128.range_max();
879
880         audio_level_callback(loudness_s, 20.0 * log10(peak),
881                 loudness_i, loudness_range_low, loudness_range_high,
882                 gain_staging_db, 20.0 * log10(final_makeup_gain),
883                 correlation.get_correlation());
884 }
885
886 void Mixer::audio_thread_func()
887 {
888         while (!should_quit) {
889                 AudioTask task;
890
891                 {
892                         unique_lock<mutex> lock(audio_mutex);
893                         audio_task_queue_changed.wait(lock, [this]{ return should_quit || !audio_task_queue.empty(); });
894                         if (should_quit) {
895                                 return;
896                         }
897                         task = audio_task_queue.front();
898                         audio_task_queue.pop();
899                 }
900
901                 process_audio_one_frame(task.pts_int, task.num_samples);
902         }
903 }
904
905 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
906 {
907         vector<float> samples_card;
908         vector<float> samples_out;
909
910         // TODO: Allow mixing audio from several sources.
911         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
912         assert(selected_audio_card < num_cards);
913
914         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
915                 samples_card.resize(num_samples * 2);
916                 {
917                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
918                         cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples);
919                 }
920                 if (card_index == selected_audio_card) {
921                         samples_out = move(samples_card);
922                 }
923         }
924
925         // Cut away everything under 120 Hz (or whatever the cutoff is);
926         // we don't need it for voice, and it will reduce headroom
927         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
928         // should be dampened.)
929         if (locut_enabled) {
930                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
931         }
932
933         // Apply a level compressor to get the general level right.
934         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
935         // (or more precisely, near it, since we don't use infinite ratio),
936         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
937         // entirely arbitrary, but from practical tests with speech, it seems to
938         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
939         {
940                 unique_lock<mutex> lock(compressor_mutex);
941                 if (level_compressor_enabled) {
942                         float threshold = 0.01f;   // -40 dBFS.
943                         float ratio = 20.0f;
944                         float attack_time = 0.5f;
945                         float release_time = 20.0f;
946                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
947                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
948                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
949                 } else {
950                         // Just apply the gain we already had.
951                         float g = pow(10.0f, gain_staging_db / 20.0f);
952                         for (size_t i = 0; i < samples_out.size(); ++i) {
953                                 samples_out[i] *= g;
954                         }
955                 }
956         }
957
958 #if 0
959         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
960                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
961                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
962                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
963 #endif
964
965 //      float limiter_att, compressor_att;
966
967         // The real compressor.
968         if (compressor_enabled) {
969                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
970                 float ratio = 20.0f;
971                 float attack_time = 0.005f;
972                 float release_time = 0.040f;
973                 float makeup_gain = 2.0f;  // +6 dB.
974                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
975 //              compressor_att = compressor.get_attenuation();
976         }
977
978         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
979         // Note that since ratio is not infinite, we could go slightly higher than this.
980         if (limiter_enabled) {
981                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
982                 float ratio = 30.0f;
983                 float attack_time = 0.0f;  // Instant.
984                 float release_time = 0.020f;
985                 float makeup_gain = 1.0f;  // 0 dB.
986                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
987 //              limiter_att = limiter.get_attenuation();
988         }
989
990 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
991
992         // Upsample 4x to find interpolated peak.
993         peak_resampler.inp_data = samples_out.data();
994         peak_resampler.inp_count = samples_out.size() / 2;
995
996         vector<float> interpolated_samples_out;
997         interpolated_samples_out.resize(samples_out.size());
998         while (peak_resampler.inp_count > 0) {  // About four iterations.
999                 peak_resampler.out_data = &interpolated_samples_out[0];
1000                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
1001                 peak_resampler.process();
1002                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
1003                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
1004                 peak_resampler.out_data = nullptr;
1005         }
1006
1007         // At this point, we are most likely close to +0 LU, but all of our
1008         // measurements have been on raw sample values, not R128 values.
1009         // So we have a final makeup gain to get us to +0 LU; the gain
1010         // adjustments required should be relatively small, and also, the
1011         // offset shouldn't change much (only if the type of audio changes
1012         // significantly). Thus, we shoot for updating this value basically
1013         // “whenever we process buffers”, since the R128 calculation isn't exactly
1014         // something we get out per-sample.
1015         //
1016         // Note that there's a feedback loop here, so we choose a very slow filter
1017         // (half-time of 100 seconds).
1018         double target_loudness_factor, alpha;
1019         {
1020                 unique_lock<mutex> lock(compressor_mutex);
1021                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
1022                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
1023                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
1024
1025                 // If we're outside +/- 5 LU uncorrected, we don't count it as
1026                 // a normal signal (probably silence) and don't change the
1027                 // correction factor; just apply what we already have.
1028                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
1029                         alpha = 0.0;
1030                 } else {
1031                         // Formula adapted from
1032                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
1033                         const double half_time_s = 100.0;
1034                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
1035                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
1036                 }
1037
1038                 double m = final_makeup_gain;
1039                 for (size_t i = 0; i < samples_out.size(); i += 2) {
1040                         samples_out[i + 0] *= m;
1041                         samples_out[i + 1] *= m;
1042                         m += (target_loudness_factor - m) * alpha;
1043                 }
1044                 final_makeup_gain = m;
1045         }
1046
1047         // Find R128 levels and L/R correlation.
1048         vector<float> left, right;
1049         deinterleave_samples(samples_out, &left, &right);
1050         float *ptrs[] = { left.data(), right.data() };
1051         {
1052                 unique_lock<mutex> lock(compressor_mutex);
1053                 r128.process(left.size(), ptrs);
1054                 correlation.process_samples(samples_out);
1055         }
1056
1057         // Send the samples to the sound card.
1058         if (alsa) {
1059                 alsa->write(samples_out);
1060         }
1061
1062         // And finally add them to the output.
1063         video_encoder->add_audio(frame_pts_int, move(samples_out));
1064 }
1065
1066 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
1067 {
1068         GLuint vao;
1069         glGenVertexArrays(1, &vao);
1070         check_error();
1071
1072         glBindVertexArray(vao);
1073         check_error();
1074
1075         // Extract Cb/Cr.
1076         GLuint fbo = resource_pool->create_fbo(dst_tex);
1077         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1078         glViewport(0, 0, WIDTH/2, HEIGHT/2);
1079         check_error();
1080
1081         glUseProgram(cbcr_program_num);
1082         check_error();
1083
1084         glActiveTexture(GL_TEXTURE0);
1085         check_error();
1086         glBindTexture(GL_TEXTURE_2D, src_tex);
1087         check_error();
1088         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1089         check_error();
1090         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1091         check_error();
1092         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1093         check_error();
1094
1095         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
1096         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
1097
1098         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
1099         check_error();
1100
1101         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1102                 glEnableVertexAttribArray(attr_index);
1103                 check_error();
1104                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1105                 check_error();
1106         }
1107
1108         glDrawArrays(GL_TRIANGLES, 0, 3);
1109         check_error();
1110
1111         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1112                 glDisableVertexAttribArray(attr_index);
1113                 check_error();
1114         }
1115
1116         glUseProgram(0);
1117         check_error();
1118         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1119         check_error();
1120
1121         resource_pool->release_fbo(fbo);
1122         glDeleteVertexArrays(1, &vao);
1123 }
1124
1125 void Mixer::release_display_frame(DisplayFrame *frame)
1126 {
1127         for (GLuint texnum : frame->temp_textures) {
1128                 resource_pool->release_2d_texture(texnum);
1129         }
1130         frame->temp_textures.clear();
1131         frame->ready_fence.reset();
1132         frame->input_frames.clear();
1133 }
1134
1135 void Mixer::start()
1136 {
1137         mixer_thread = thread(&Mixer::thread_func, this);
1138         audio_thread = thread(&Mixer::audio_thread_func, this);
1139 }
1140
1141 void Mixer::quit()
1142 {
1143         should_quit = true;
1144         audio_task_queue_changed.notify_one();
1145         mixer_thread.join();
1146         audio_thread.join();
1147 }
1148
1149 void Mixer::transition_clicked(int transition_num)
1150 {
1151         theme->transition_clicked(transition_num, pts());
1152 }
1153
1154 void Mixer::channel_clicked(int preview_num)
1155 {
1156         theme->channel_clicked(preview_num);
1157 }
1158
1159 void Mixer::reset_meters()
1160 {
1161         peak_resampler.reset();
1162         peak = 0.0f;
1163         r128.reset();
1164         r128.integr_start();
1165         correlation.reset();
1166 }
1167
1168 void Mixer::start_mode_scanning(unsigned card_index)
1169 {
1170         assert(card_index < num_cards);
1171         if (is_mode_scanning[card_index]) {
1172                 return;
1173         }
1174         is_mode_scanning[card_index] = true;
1175         mode_scanlist[card_index].clear();
1176         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1177                 mode_scanlist[card_index].push_back(mode.first);
1178         }
1179         assert(!mode_scanlist[card_index].empty());
1180         mode_scanlist_index[card_index] = 0;
1181         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1182         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1183 }
1184
1185 Mixer::OutputChannel::~OutputChannel()
1186 {
1187         if (has_current_frame) {
1188                 parent->release_display_frame(&current_frame);
1189         }
1190         if (has_ready_frame) {
1191                 parent->release_display_frame(&ready_frame);
1192         }
1193 }
1194
1195 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1196 {
1197         // Store this frame for display. Remove the ready frame if any
1198         // (it was seemingly never used).
1199         {
1200                 unique_lock<mutex> lock(frame_mutex);
1201                 if (has_ready_frame) {
1202                         parent->release_display_frame(&ready_frame);
1203                 }
1204                 ready_frame = frame;
1205                 has_ready_frame = true;
1206         }
1207
1208         if (new_frame_ready_callback) {
1209                 new_frame_ready_callback();
1210         }
1211
1212         // Reduce the number of callbacks by filtering duplicates. The reason
1213         // why we bother doing this is that Qt seemingly can get into a state
1214         // where its builds up an essentially unbounded queue of signals,
1215         // consuming more and more memory, and there's no good way of collapsing
1216         // user-defined signals or limiting the length of the queue.
1217         if (transition_names_updated_callback) {
1218                 vector<string> transition_names = global_mixer->get_transition_names();
1219                 bool changed = false;
1220                 if (transition_names.size() != last_transition_names.size()) {
1221                         changed = true;
1222                 } else {
1223                         for (unsigned i = 0; i < transition_names.size(); ++i) {
1224                                 if (transition_names[i] != last_transition_names[i]) {
1225                                         changed = true;
1226                                         break;
1227                                 }
1228                         }
1229                 }
1230                 if (changed) {
1231                         transition_names_updated_callback(transition_names);
1232                         last_transition_names = transition_names;
1233                 }
1234         }
1235         if (name_updated_callback) {
1236                 string name = global_mixer->get_channel_name(channel);
1237                 if (name != last_name) {
1238                         name_updated_callback(name);
1239                         last_name = name;
1240                 }
1241         }
1242         if (color_updated_callback) {
1243                 string color = global_mixer->get_channel_color(channel);
1244                 if (color != last_color) {
1245                         color_updated_callback(color);
1246                         last_color = color;
1247                 }
1248         }
1249 }
1250
1251 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1252 {
1253         unique_lock<mutex> lock(frame_mutex);
1254         if (!has_current_frame && !has_ready_frame) {
1255                 return false;
1256         }
1257
1258         if (has_current_frame && has_ready_frame) {
1259                 // We have a new ready frame. Toss the current one.
1260                 parent->release_display_frame(&current_frame);
1261                 has_current_frame = false;
1262         }
1263         if (has_ready_frame) {
1264                 assert(!has_current_frame);
1265                 current_frame = ready_frame;
1266                 ready_frame.ready_fence.reset();  // Drop the refcount.
1267                 ready_frame.input_frames.clear();  // Drop the refcounts.
1268                 has_current_frame = true;
1269                 has_ready_frame = false;
1270         }
1271
1272         *frame = current_frame;
1273         return true;
1274 }
1275
1276 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1277 {
1278         new_frame_ready_callback = callback;
1279 }
1280
1281 void Mixer::OutputChannel::set_transition_names_updated_callback(Mixer::transition_names_updated_callback_t callback)
1282 {
1283         transition_names_updated_callback = callback;
1284 }
1285
1286 void Mixer::OutputChannel::set_name_updated_callback(Mixer::name_updated_callback_t callback)
1287 {
1288         name_updated_callback = callback;
1289 }
1290
1291 void Mixer::OutputChannel::set_color_updated_callback(Mixer::color_updated_callback_t callback)
1292 {
1293         color_updated_callback = callback;
1294 }
1295
1296 mutex RefCountedGLsync::fence_lock;