]> git.sesse.net Git - nageru/blob - nageru/audio_mixer.h
Make number of cards flexible at runtime.
[nageru] / nageru / audio_mixer.h
1 #ifndef _AUDIO_MIXER_H
2 #define _AUDIO_MIXER_H 1
3
4 // The audio mixer, dealing with extracting the right signals from
5 // each capture card, resampling signals so that they are in sync,
6 // processing them with effects (if desired), and then mixing them
7 // all together into one final audio signal.
8 //
9 // All operations on AudioMixer (except destruction) are thread-safe.
10
11 #include <assert.h>
12 #include <stdint.h>
13 #include <zita-resampler/resampler.h>
14 #include <atomic>
15 #include <chrono>
16 #include <functional>
17 #include <map>
18 #include <memory>
19 #include <mutex>
20 #include <set>
21 #include <string>
22 #include <vector>
23
24 #include "alsa_pool.h"
25 #include "card_type.h"
26 #include "correlation_measurer.h"
27 #include "decibel.h"
28 #include "defs.h"
29 #include "ebu_r128_proc.h"
30 #include "filter.h"
31 #include "input_mapping.h"
32 #include "resampling_queue.h"
33 #include "stereocompressor.h"
34
35 class DeviceSpecProto;
36
37 namespace bmusb {
38 struct AudioFormat;
39 }  // namespace bmusb
40
41 // Convert the given audio from {16,24,32}-bit M-channel to 32-bit N-channel PCM.
42 // Assumes little-endian and chunky, signed PCM throughout.
43 std::vector<int32_t> convert_audio_to_fixed32(const uint8_t *data, unsigned num_samples, bmusb::AudioFormat audio_format, unsigned num_destination_channels);
44
45 enum EQBand {
46         EQ_BAND_BASS = 0,
47         EQ_BAND_MID,
48         EQ_BAND_TREBLE,
49         NUM_EQ_BANDS
50 };
51
52 class AudioMixer {
53 public:
54         AudioMixer();
55         void reset_resampler(DeviceSpec device_spec);
56         void reset_meters();
57
58         // Add audio (or silence) to the given device's queue. Can return false if
59         // the lock wasn't successfully taken; if so, you should simply try again.
60         // (This is to avoid a deadlock where a card hangs on the mutex in add_audio()
61         // while we are trying to shut it down from another thread that also holds
62         // the mutex.)
63         bool add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, bmusb::AudioFormat audio_format, std::chrono::steady_clock::time_point frame_time);
64         bool add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames);
65
66         // If a given device is offline for whatever reason and cannot deliver audio
67         // (by means of add_audio() or add_silence()), you can call put it in silence mode,
68         // where it will be taken to only output silence. Note that when taking it _out_
69         // of silence mode, the resampler will be reset, so that old audio will not
70         // affect it. Same true/false behavior as add_audio().
71         bool silence_card(DeviceSpec device_spec, bool silence);
72
73         std::vector<float> get_output(std::chrono::steady_clock::time_point ts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy);
74
75         float get_fader_volume(unsigned bus_index) const { return fader_volume_db[bus_index]; }
76         void set_fader_volume(unsigned bus_index, float level_db) { fader_volume_db[bus_index] = level_db; }
77
78         bool get_mute(unsigned bus_index) const { return mute[bus_index]; }
79         void set_mute(unsigned bus_index, bool muted) { mute[bus_index] = muted; }
80
81         // Note: This operation holds all ALSA devices (see ALSAPool::get_devices()).
82         // You will need to call set_input_mapping() to get the hold state correctly,
83         // or every card will be held forever.
84         std::map<DeviceSpec, DeviceInfo> get_devices();
85
86         // See comments on ALSAPool::get_card_state().
87         ALSAPool::Device::State get_alsa_card_state(unsigned index)
88         {
89                 return alsa_pool.get_card_state(index);
90         }
91
92         // See comments on ALSAPool::create_dead_card().
93         DeviceSpec create_dead_card(const std::string &name, const std::string &info, unsigned num_channels)
94         {
95                 unsigned dead_card_index = alsa_pool.create_dead_card(name, info, num_channels);
96                 return DeviceSpec{InputSourceType::ALSA_INPUT, dead_card_index};
97         }
98
99         // NOTE: The display name is not overridden if active == false.
100         void set_device_parameters(DeviceSpec device_spec, const std::string &display_name, CardType card_type, unsigned num_channels, bool active);
101         bool get_active(DeviceSpec device_spec);
102
103         // Note: The card should be held (currently this isn't enforced, though).
104         void serialize_device(DeviceSpec device_spec, DeviceSpecProto *device_spec_proto);
105
106         enum class MappingMode {
107                 // A single bus, only from a video card (no ALSA devices),
108                 // only channel 1 and 2, locked to +0 dB. Note that this is
109                 // only an UI abstraction around exactly the same audio code
110                 // as MULTICHANNEL; it's just less flexible.
111                 SIMPLE,
112
113                 // Full, arbitrary mappings.
114                 MULTICHANNEL
115         };
116
117         // Automatically sets mapping mode to MappingMode::SIMPLE.
118         void set_simple_input(unsigned card_index);
119
120         // If mapping mode is not representable as a MappingMode::SIMPLE type
121         // mapping, returns numeric_limits<unsigned>::max().
122         unsigned get_simple_input() const;
123
124         // Implicitly sets mapping mode to MappingMode::MULTICHANNEL.
125         void set_input_mapping(const InputMapping &input_mapping);
126
127         MappingMode get_mapping_mode() const;
128         InputMapping get_input_mapping() const;
129
130         unsigned num_buses() const;
131
132         void set_locut_cutoff(float cutoff_hz)
133         {
134                 locut_cutoff_hz = cutoff_hz;
135         }
136
137         float get_locut_cutoff() const
138         {
139                 return locut_cutoff_hz;
140         }
141
142         void set_locut_enabled(unsigned bus, bool enabled)
143         {
144                 locut_enabled[bus] = enabled;
145         }
146
147         bool get_locut_enabled(unsigned bus)
148         {
149                 return locut_enabled[bus];
150         }
151
152         bool is_mono(unsigned bus_index);
153
154         void set_stereo_width(unsigned bus_index, float width)
155         {
156                 stereo_width[bus_index] = width;
157         }
158
159         float get_stereo_width(unsigned bus_index)
160         {
161                 return stereo_width[bus_index];
162         }
163
164         void set_eq(unsigned bus_index, EQBand band, float db_gain)
165         {
166                 assert(band >= 0 && band < NUM_EQ_BANDS);
167                 eq_level_db[bus_index][band] = db_gain;
168         }
169
170         float get_eq(unsigned bus_index, EQBand band) const
171         {
172                 assert(band >= 0 && band < NUM_EQ_BANDS);
173                 return eq_level_db[bus_index][band];
174         }
175
176         float get_limiter_threshold_dbfs() const
177         {
178                 return limiter_threshold_dbfs;
179         }
180
181         float get_compressor_threshold_dbfs(unsigned bus_index) const
182         {
183                 return compressor_threshold_dbfs[bus_index];
184         }
185
186         void set_limiter_threshold_dbfs(float threshold_dbfs)
187         {
188                 limiter_threshold_dbfs = threshold_dbfs;
189         }
190
191         void set_compressor_threshold_dbfs(unsigned bus_index, float threshold_dbfs)
192         {
193                 compressor_threshold_dbfs[bus_index] = threshold_dbfs;
194         }
195
196         void set_limiter_enabled(bool enabled)
197         {
198                 limiter_enabled = enabled;
199         }
200
201         bool get_limiter_enabled() const
202         {
203                 return limiter_enabled;
204         }
205
206         void set_compressor_enabled(unsigned bus_index, bool enabled)
207         {
208                 compressor_enabled[bus_index] = enabled;
209         }
210
211         bool get_compressor_enabled(unsigned bus_index) const
212         {
213                 return compressor_enabled[bus_index];
214         }
215
216         void set_gain_staging_db(unsigned bus_index, float gain_db)
217         {
218                 std::lock_guard<std::mutex> lock(compressor_mutex);
219                 level_compressor_enabled[bus_index] = false;
220                 gain_staging_db[bus_index] = gain_db;
221         }
222
223         float get_gain_staging_db(unsigned bus_index) const
224         {
225                 std::lock_guard<std::mutex> lock(compressor_mutex);
226                 return gain_staging_db[bus_index];
227         }
228
229         void set_gain_staging_auto(unsigned bus_index, bool enabled)
230         {
231                 std::lock_guard<std::mutex> lock(compressor_mutex);
232                 level_compressor_enabled[bus_index] = enabled;
233         }
234
235         bool get_gain_staging_auto(unsigned bus_index) const
236         {
237                 std::lock_guard<std::mutex> lock(compressor_mutex);
238                 return level_compressor_enabled[bus_index];
239         }
240
241         void set_final_makeup_gain_db(float gain_db)
242         {
243                 std::lock_guard<std::mutex> lock(compressor_mutex);
244                 final_makeup_gain_auto = false;
245                 final_makeup_gain = from_db(gain_db);
246         }
247
248         float get_final_makeup_gain_db()
249         {
250                 std::lock_guard<std::mutex> lock(compressor_mutex);
251                 return to_db(final_makeup_gain);
252         }
253
254         void set_final_makeup_gain_auto(bool enabled)
255         {
256                 std::lock_guard<std::mutex> lock(compressor_mutex);
257                 final_makeup_gain_auto = enabled;
258         }
259
260         bool get_final_makeup_gain_auto() const
261         {
262                 std::lock_guard<std::mutex> lock(compressor_mutex);
263                 return final_makeup_gain_auto;
264         }
265
266         void reset_peak(unsigned bus_index);
267
268         struct BusLevel {
269                 float current_level_dbfs[2];  // Digital peak of last frame, left and right.
270                 float peak_level_dbfs[2];  // Digital peak with hold, left and right.
271                 float historic_peak_dbfs;
272                 float gain_staging_db;
273                 float compressor_attenuation_db;  // A positive number; 0.0 for no attenuation.
274         };
275
276         typedef std::function<void(float level_lufs, float peak_db,
277                                    std::vector<BusLevel> bus_levels,
278                                    float global_level_lufs, float range_low_lufs, float range_high_lufs,
279                                    float final_makeup_gain_db,
280                                    float correlation)> audio_level_callback_t;
281         void set_audio_level_callback(audio_level_callback_t callback)
282         {
283                 audio_level_callback = callback;
284         }
285
286         typedef std::function<void()> state_changed_callback_t;
287         void set_state_changed_callback(state_changed_callback_t callback)
288         {
289                 state_changed_callback = callback;
290         }
291
292         state_changed_callback_t get_state_changed_callback() const
293         {
294                 return state_changed_callback;
295         }
296
297         void trigger_state_changed_callback()
298         {
299                 if (state_changed_callback != nullptr) {
300                         state_changed_callback();
301                 }
302         }
303
304         // A combination of all settings for a bus. Useful if you want to get
305         // or store them as a whole without bothering to call all of the get_*
306         // or set_* functions for that bus.
307         struct BusSettings {
308                 float fader_volume_db;
309                 bool muted;
310                 bool locut_enabled;
311                 float stereo_width;
312                 float eq_level_db[NUM_EQ_BANDS];
313                 float gain_staging_db;
314                 bool level_compressor_enabled;
315                 float compressor_threshold_dbfs;
316                 bool compressor_enabled;
317         };
318         static BusSettings get_default_bus_settings();
319         BusSettings get_bus_settings(unsigned bus_index) const;
320         void set_bus_settings(unsigned bus_index, const BusSettings &settings);
321
322 private:
323         struct AudioDevice {
324                 std::unique_ptr<ResamplingQueue> resampling_queue;
325                 std::string display_name;
326                 unsigned capture_frequency = OUTPUT_FREQUENCY;
327                 // Which channels we consider interesting (ie., are part of some input_mapping).
328                 std::set<unsigned> interesting_channels;
329                 bool silenced = false;
330                 CardType card_type;
331                 unsigned num_channels = 2;  // Ignored for ALSA cards, which check the device directly.
332                 bool active = false;  // Only really relevant for capture cards (not ALSA cards).
333         };
334
335         const AudioDevice *find_audio_device(DeviceSpec device_spec) const
336         {
337                 return const_cast<AudioMixer *>(this)->find_audio_device(device_spec);
338         }
339
340         AudioDevice *find_audio_device(DeviceSpec device_spec);
341
342         void find_sample_src_from_device(const std::map<DeviceSpec, std::vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride);
343         void fill_audio_bus(const std::map<DeviceSpec, std::vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float stereo_width, float *output);
344         void reset_resampler_mutex_held(DeviceSpec device_spec);
345         void apply_eq(unsigned bus_index, std::vector<float> *samples_bus);
346         void update_meters(const std::vector<float> &samples);
347         void add_bus_to_master(unsigned bus_index, const std::vector<float> &samples_bus, std::vector<float> *samples_out);
348         void measure_bus_levels(unsigned bus_index, const std::vector<float> &left, const std::vector<float> &right);
349         void send_audio_level_callback();
350         std::vector<DeviceSpec> get_active_devices() const;
351         void set_input_mapping_lock_held(const InputMapping &input_mapping);
352         std::string spec_to_string(DeviceSpec device_spec) const;
353
354         mutable std::timed_mutex audio_mutex;
355
356         ALSAPool alsa_pool;
357         AudioDevice video_cards[MAX_VIDEO_CARDS];  // Under audio_mutex.
358         AudioDevice alsa_inputs[MAX_ALSA_CARDS];  // Under audio_mutex.
359
360         std::atomic<float> locut_cutoff_hz{120};
361         StereoFilter locut[MAX_BUSES];  // Default cutoff 120 Hz, 24 dB/oct.
362         std::atomic<bool> locut_enabled[MAX_BUSES];
363         StereoFilter eq[MAX_BUSES][NUM_EQ_BANDS];  // The one for EQBand::MID isn't actually used (see comments in apply_eq()).
364
365         // First compressor; takes us up to about -12 dBFS.
366         mutable std::mutex compressor_mutex;
367         std::unique_ptr<StereoCompressor> level_compressor[MAX_BUSES];  // Under compressor_mutex. Used to set/override gain_staging_db if <level_compressor_enabled>.
368         float gain_staging_db[MAX_BUSES];  // Under compressor_mutex.
369         float last_gain_staging_db[MAX_BUSES];  // Under compressor_mutex.
370         bool level_compressor_enabled[MAX_BUSES];  // Under compressor_mutex.
371
372         static constexpr float ref_level_dbfs = -14.0f;  // Chosen so that we end up around 0 LU in practice.
373         static constexpr float ref_level_lufs = -23.0f;  // 0 LU, more or less by definition.
374
375         StereoCompressor limiter;
376         std::atomic<float> limiter_threshold_dbfs{ref_level_dbfs + 4.0f};   // 4 dB.
377         std::atomic<bool> limiter_enabled{true};
378         std::unique_ptr<StereoCompressor> compressor[MAX_BUSES];
379         std::atomic<float> compressor_threshold_dbfs[MAX_BUSES];
380         std::atomic<bool> compressor_enabled[MAX_BUSES];
381
382         // Note: The values here are not in dB.
383         struct PeakHistory {
384                 float current_level = 0.0f;  // Peak of the last frame.
385                 float historic_peak = 0.0f;  // Highest peak since last reset; no falloff.
386                 float current_peak = 0.0f;  // Current peak of the peak meter.
387                 float last_peak = 0.0f;
388                 float age_seconds = 0.0f;   // Time since "last_peak" was set.
389         };
390         PeakHistory peak_history[MAX_BUSES][2];  // Separate for each channel. Under audio_mutex.
391
392         double final_makeup_gain = 1.0;  // Under compressor_mutex. Read/write by the user. Note: Not in dB, we want the numeric precision so that we can change it slowly.
393         bool final_makeup_gain_auto = true;  // Under compressor_mutex.
394
395         MappingMode current_mapping_mode;  // Under audio_mutex.
396         InputMapping input_mapping;  // Under audio_mutex.
397         std::atomic<float> fader_volume_db[MAX_BUSES] {{ 0.0f }};
398         std::atomic<bool> mute[MAX_BUSES] {{ false }};
399         float last_fader_volume_db[MAX_BUSES] { 0.0f };  // Under audio_mutex.
400         std::atomic<float> stereo_width[MAX_BUSES] {{ 0.0f }};  // Default 1.0f (is set in constructor).
401         std::atomic<float> eq_level_db[MAX_BUSES][NUM_EQ_BANDS] {{{ 0.0f }}};
402         float last_eq_level_db[MAX_BUSES][NUM_EQ_BANDS] {{ 0.0f }};
403
404         audio_level_callback_t audio_level_callback = nullptr;
405         state_changed_callback_t state_changed_callback = nullptr;
406         mutable std::mutex audio_measure_mutex;
407         Ebu_r128_proc r128;  // Under audio_measure_mutex.
408         CorrelationMeasurer correlation;  // Under audio_measure_mutex.
409         Resampler peak_resampler;  // Under audio_measure_mutex.
410         std::atomic<float> peak{0.0f};
411
412         // Metrics.
413         std::atomic<double> metric_audio_loudness_short_lufs{0.0 / 0.0};
414         std::atomic<double> metric_audio_loudness_integrated_lufs{0.0 / 0.0};
415         std::atomic<double> metric_audio_loudness_range_low_lufs{0.0 / 0.0};
416         std::atomic<double> metric_audio_loudness_range_high_lufs{0.0 / 0.0};
417         std::atomic<double> metric_audio_peak_dbfs{0.0 / 0.0};
418         std::atomic<double> metric_audio_final_makeup_gain_db{0.0};
419         std::atomic<double> metric_audio_correlation{0.0};
420
421         // These are all gauges corresponding to the elements of BusLevel.
422         // In a sense, they'd probably do better as histograms, but that's an
423         // awful lot of time series when you have many buses.
424         struct BusMetrics {
425                 std::vector<std::pair<std::string, std::string>> labels;
426                 std::atomic<double> current_level_dbfs[2]{{0.0/0.0},{0.0/0.0}};
427                 std::atomic<double> peak_level_dbfs[2]{{0.0/0.0},{0.0/0.0}};
428                 std::atomic<double> historic_peak_dbfs{0.0/0.0};
429                 std::atomic<double> gain_staging_db{0.0/0.0};
430                 std::atomic<double> compressor_attenuation_db{0.0/0.0};
431         };
432         std::unique_ptr<BusMetrics[]> bus_metrics;  // One for each bus in <input_mapping>.
433 };
434
435 extern AudioMixer *global_audio_mixer;
436
437 #endif  // !defined(_AUDIO_MIXER_H)