]> git.sesse.net Git - nageru/blob - nageru/audio_mixer.h
When the delay analyzer wants audio from an ALSA card, temporarily auto-enable captur...
[nageru] / nageru / audio_mixer.h
1 #ifndef _AUDIO_MIXER_H
2 #define _AUDIO_MIXER_H 1
3
4 // The audio mixer, dealing with extracting the right signals from
5 // each capture card, resampling signals so that they are in sync,
6 // processing them with effects (if desired), and then mixing them
7 // all together into one final audio signal.
8 //
9 // All operations on AudioMixer, except destruction and set_delay_analyzer(),
10 // are thread-safe.
11
12 #include <assert.h>
13 #include <stdint.h>
14 #include <zita-resampler/resampler.h>
15 #include <atomic>
16 #include <chrono>
17 #include <functional>
18 #include <map>
19 #include <memory>
20 #include <mutex>
21 #include <set>
22 #include <string>
23 #include <vector>
24
25 #include "alsa_pool.h"
26 #include "correlation_measurer.h"
27 #include "decibel.h"
28 #include "defs.h"
29 #include "ebu_r128_proc.h"
30 #include "filter.h"
31 #include "input_mapping.h"
32 #include "resampling_queue.h"
33 #include "stereocompressor.h"
34
35 class DelayAnalyzerInterface;
36 class DeviceSpecProto;
37
38 namespace bmusb {
39 struct AudioFormat;
40 }  // namespace bmusb
41
42 // Convert the given audio from {16,24,32}-bit M-channel to 32-bit N-channel PCM.
43 // Assumes little-endian and chunky, signed PCM throughout.
44 std::vector<int32_t> convert_audio_to_fixed32(const uint8_t *data, unsigned num_samples, bmusb::AudioFormat audio_format, unsigned num_destination_channels);
45
46 // Similar, except converts to floating-point instead, and converts only one channel.
47 void convert_audio_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
48                            const uint8_t *src, size_t in_channel, bmusb::AudioFormat in_audio_format,
49                            size_t num_samples);
50
51 enum EQBand {
52         EQ_BAND_BASS = 0,
53         EQ_BAND_MID,
54         EQ_BAND_TREBLE,
55         NUM_EQ_BANDS
56 };
57
58 class AudioMixer {
59 public:
60         AudioMixer(unsigned num_capture_cards, unsigned num_ffmpeg_inputs);
61         void reset_resampler(DeviceSpec device_spec);
62         void reset_meters();
63
64         // Add audio (or silence) to the given device's queue. Can return false if
65         // the lock wasn't successfully taken; if so, you should simply try again.
66         // (This is to avoid a deadlock where a card hangs on the mutex in add_audio()
67         // while we are trying to shut it down from another thread that also holds
68         // the mutex.)
69         bool add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, bmusb::AudioFormat audio_format, std::chrono::steady_clock::time_point frame_time);
70         bool add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames);
71
72         // If a given device is offline for whatever reason and cannot deliver audio
73         // (by means of add_audio() or add_silence()), you can call put it in silence mode,
74         // where it will be taken to only output silence. Note that when taking it _out_
75         // of silence mode, the resampler will be reset, so that old audio will not
76         // affect it. Same true/false behavior as add_audio().
77         bool silence_card(DeviceSpec device_spec, bool silence);
78
79         std::vector<float> get_output(std::chrono::steady_clock::time_point ts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy);
80
81         float get_fader_volume(unsigned bus_index) const { return fader_volume_db[bus_index]; }
82         void set_fader_volume(unsigned bus_index, float level_db) { fader_volume_db[bus_index] = level_db; }
83
84         bool get_mute(unsigned bus_index) const { return mute[bus_index]; }
85         void set_mute(unsigned bus_index, bool muted) { mute[bus_index] = muted; }
86
87         enum HoldDevices {
88                 HOLD_NO_DEVICES,
89
90                 // Note: Holds all ALSA devices (see ALSAPool::get_devices()).
91                 // You will need to call set_input_mapping() to get the hold state correctly,
92                 // or every card will be held forever.
93                 HOLD_ALSA_DEVICES
94         };
95         std::map<DeviceSpec, DeviceInfo> get_devices(HoldDevices hold_devices);
96
97         // See comments on ALSAPool::get_card_state().
98         ALSAPool::Device::State get_alsa_card_state(unsigned index)
99         {
100                 return alsa_pool.get_card_state(index);
101         }
102
103         // See comments on ALSAPool::create_dead_card().
104         DeviceSpec create_dead_card(const std::string &name, const std::string &info, unsigned num_channels)
105         {
106                 unsigned dead_card_index = alsa_pool.create_dead_card(name, info, num_channels);
107                 return DeviceSpec{InputSourceType::ALSA_INPUT, dead_card_index};
108         }
109
110         void set_display_name(DeviceSpec device_spec, const std::string &name);
111
112         // Note: The card should be held (currently this isn't enforced, though).
113         void serialize_device(DeviceSpec device_spec, DeviceSpecProto *device_spec_proto);
114
115         enum class MappingMode {
116                 // A single bus, only from a video card (no ALSA devices),
117                 // only channel 1 and 2, locked to +0 dB. Note that this is
118                 // only an UI abstraction around exactly the same audio code
119                 // as MULTICHANNEL; it's just less flexible.
120                 SIMPLE,
121
122                 // Full, arbitrary mappings.
123                 MULTICHANNEL
124         };
125
126         // Automatically sets mapping mode to MappingMode::SIMPLE.
127         void set_simple_input(unsigned card_index);
128
129         // If mapping mode is not representable as a MappingMode::SIMPLE type
130         // mapping, returns numeric_limits<unsigned>::max().
131         unsigned get_simple_input() const;
132
133         // Implicitly sets mapping mode to MappingMode::MULTICHANNEL.
134         void set_input_mapping(const InputMapping &input_mapping);
135
136         MappingMode get_mapping_mode() const;
137         InputMapping get_input_mapping() const;
138
139         // See extra_devices.
140         void set_extra_devices(const std::set<DeviceSpec> &devices);
141
142         unsigned num_buses() const;
143
144         void set_locut_cutoff(float cutoff_hz)
145         {
146                 locut_cutoff_hz = cutoff_hz;
147         }
148
149         float get_locut_cutoff() const
150         {
151                 return locut_cutoff_hz;
152         }
153
154         void set_locut_enabled(unsigned bus, bool enabled)
155         {
156                 locut_enabled[bus] = enabled;
157         }
158
159         bool get_locut_enabled(unsigned bus)
160         {
161                 return locut_enabled[bus];
162         }
163
164         bool is_mono(unsigned bus_index);
165
166         void set_stereo_width(unsigned bus_index, float width)
167         {
168                 stereo_width[bus_index] = width;
169         }
170
171         float get_stereo_width(unsigned bus_index)
172         {
173                 return stereo_width[bus_index];
174         }
175
176         void set_eq(unsigned bus_index, EQBand band, float db_gain)
177         {
178                 assert(band >= 0 && band < NUM_EQ_BANDS);
179                 eq_level_db[bus_index][band] = db_gain;
180         }
181
182         float get_eq(unsigned bus_index, EQBand band) const
183         {
184                 assert(band >= 0 && band < NUM_EQ_BANDS);
185                 return eq_level_db[bus_index][band];
186         }
187
188         float get_limiter_threshold_dbfs() const
189         {
190                 return limiter_threshold_dbfs;
191         }
192
193         float get_compressor_threshold_dbfs(unsigned bus_index) const
194         {
195                 return compressor_threshold_dbfs[bus_index];
196         }
197
198         void set_limiter_threshold_dbfs(float threshold_dbfs)
199         {
200                 limiter_threshold_dbfs = threshold_dbfs;
201         }
202
203         void set_compressor_threshold_dbfs(unsigned bus_index, float threshold_dbfs)
204         {
205                 compressor_threshold_dbfs[bus_index] = threshold_dbfs;
206         }
207
208         void set_limiter_enabled(bool enabled)
209         {
210                 limiter_enabled = enabled;
211         }
212
213         bool get_limiter_enabled() const
214         {
215                 return limiter_enabled;
216         }
217
218         void set_compressor_enabled(unsigned bus_index, bool enabled)
219         {
220                 compressor_enabled[bus_index] = enabled;
221         }
222
223         bool get_compressor_enabled(unsigned bus_index) const
224         {
225                 return compressor_enabled[bus_index];
226         }
227
228         void set_gain_staging_db(unsigned bus_index, float gain_db)
229         {
230                 std::lock_guard<std::mutex> lock(compressor_mutex);
231                 level_compressor_enabled[bus_index] = false;
232                 gain_staging_db[bus_index] = gain_db;
233         }
234
235         float get_gain_staging_db(unsigned bus_index) const
236         {
237                 std::lock_guard<std::mutex> lock(compressor_mutex);
238                 return gain_staging_db[bus_index];
239         }
240
241         void set_gain_staging_auto(unsigned bus_index, bool enabled)
242         {
243                 std::lock_guard<std::mutex> lock(compressor_mutex);
244                 level_compressor_enabled[bus_index] = enabled;
245         }
246
247         bool get_gain_staging_auto(unsigned bus_index) const
248         {
249                 std::lock_guard<std::mutex> lock(compressor_mutex);
250                 return level_compressor_enabled[bus_index];
251         }
252
253         void set_final_makeup_gain_db(float gain_db)
254         {
255                 std::lock_guard<std::mutex> lock(compressor_mutex);
256                 final_makeup_gain_auto = false;
257                 final_makeup_gain = from_db(gain_db);
258         }
259
260         float get_final_makeup_gain_db()
261         {
262                 std::lock_guard<std::mutex> lock(compressor_mutex);
263                 return to_db(final_makeup_gain);
264         }
265
266         void set_final_makeup_gain_auto(bool enabled)
267         {
268                 std::lock_guard<std::mutex> lock(compressor_mutex);
269                 final_makeup_gain_auto = enabled;
270         }
271
272         bool get_final_makeup_gain_auto() const
273         {
274                 std::lock_guard<std::mutex> lock(compressor_mutex);
275                 return final_makeup_gain_auto;
276         }
277
278         void reset_peak(unsigned bus_index);
279
280         struct BusLevel {
281                 float current_level_dbfs[2];  // Digital peak of last frame, left and right.
282                 float peak_level_dbfs[2];  // Digital peak with hold, left and right.
283                 float historic_peak_dbfs;
284                 float gain_staging_db;
285                 float compressor_attenuation_db;  // A positive number; 0.0 for no attenuation.
286         };
287
288         typedef std::function<void(float level_lufs, float peak_db,
289                                    std::vector<BusLevel> bus_levels,
290                                    float global_level_lufs, float range_low_lufs, float range_high_lufs,
291                                    float final_makeup_gain_db,
292                                    float correlation)> audio_level_callback_t;
293         void set_audio_level_callback(audio_level_callback_t callback)
294         {
295                 audio_level_callback = callback;
296         }
297
298         typedef std::function<void()> state_changed_callback_t;
299         void set_state_changed_callback(state_changed_callback_t callback)
300         {
301                 state_changed_callback = callback;
302         }
303
304         state_changed_callback_t get_state_changed_callback() const
305         {
306                 return state_changed_callback;
307         }
308
309         void trigger_state_changed_callback()
310         {
311                 if (state_changed_callback != nullptr) {
312                         state_changed_callback();
313                 }
314         }
315
316         // A combination of all settings for a bus. Useful if you want to get
317         // or store them as a whole without bothering to call all of the get_*
318         // or set_* functions for that bus.
319         struct BusSettings {
320                 float fader_volume_db;
321                 bool muted;
322                 bool locut_enabled;
323                 float stereo_width;
324                 float eq_level_db[NUM_EQ_BANDS];
325                 float gain_staging_db;
326                 bool level_compressor_enabled;
327                 float compressor_threshold_dbfs;
328                 bool compressor_enabled;
329         };
330         static BusSettings get_default_bus_settings();
331         BusSettings get_bus_settings(unsigned bus_index) const;
332         void set_bus_settings(unsigned bus_index, const BusSettings &settings);
333
334         // Does not take ownership. Not thread-safe (so only call when the mixer is being created).
335         void set_delay_analyzer(DelayAnalyzerInterface *delay_analyzer)
336         {
337                 this->delay_analyzer = delay_analyzer;
338         }
339
340 private:
341         struct AudioDevice {
342                 std::unique_ptr<ResamplingQueue> resampling_queue;
343                 std::string display_name;
344                 unsigned capture_frequency = OUTPUT_FREQUENCY;
345                 // Which channels we consider interesting (ie., are part of some input_mapping).
346                 std::set<unsigned> interesting_channels;
347                 bool silenced = false;
348
349                 // Positive means the audio is delayed, negative means we try to have it earlier
350                 // (although we can't time-travel!). Stored together with the input mapping.
351                 double extra_delay_ms = 0.0;
352         };
353
354         const AudioDevice *find_audio_device(DeviceSpec device_spec) const
355         {
356                 return const_cast<AudioMixer *>(this)->find_audio_device(device_spec);
357         }
358
359         AudioDevice *find_audio_device(DeviceSpec device_spec);
360
361         void find_sample_src_from_device(const std::map<DeviceSpec, std::vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride);
362         void fill_audio_bus(const std::map<DeviceSpec, std::vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float stereo_width, float *output);
363         void reset_resampler_mutex_held(DeviceSpec device_spec);
364         void apply_eq(unsigned bus_index, std::vector<float> *samples_bus);
365         void update_meters(const std::vector<float> &samples);
366         void add_bus_to_master(unsigned bus_index, const std::vector<float> &samples_bus, std::vector<float> *samples_out);
367         void measure_bus_levels(unsigned bus_index, const std::vector<float> &left, const std::vector<float> &right);
368         void send_audio_level_callback();
369         std::vector<DeviceSpec> get_active_devices() const;
370         void set_input_mapping_lock_held(const InputMapping &input_mapping);
371         void start_or_stop_alsa_capture(DeviceSpec device_spec);
372
373         unsigned num_capture_cards, num_ffmpeg_inputs;
374
375         mutable std::timed_mutex audio_mutex;
376
377         ALSAPool alsa_pool;
378         AudioDevice video_cards[MAX_VIDEO_CARDS];  // Under audio_mutex.
379         AudioDevice alsa_inputs[MAX_ALSA_CARDS];  // Under audio_mutex.
380         std::unique_ptr<AudioDevice[]> ffmpeg_inputs;  // Under audio_mutex.
381
382         std::atomic<float> locut_cutoff_hz{120};
383         StereoFilter locut[MAX_BUSES];  // Default cutoff 120 Hz, 24 dB/oct.
384         std::atomic<bool> locut_enabled[MAX_BUSES];
385         StereoFilter eq[MAX_BUSES][NUM_EQ_BANDS];  // The one for EQBand::MID isn't actually used (see comments in apply_eq()).
386
387         // First compressor; takes us up to about -12 dBFS.
388         mutable std::mutex compressor_mutex;
389         std::unique_ptr<StereoCompressor> level_compressor[MAX_BUSES];  // Under compressor_mutex. Used to set/override gain_staging_db if <level_compressor_enabled>.
390         float gain_staging_db[MAX_BUSES];  // Under compressor_mutex.
391         float last_gain_staging_db[MAX_BUSES];  // Under compressor_mutex.
392         bool level_compressor_enabled[MAX_BUSES];  // Under compressor_mutex.
393
394         static constexpr float ref_level_dbfs = -14.0f;  // Chosen so that we end up around 0 LU in practice.
395         static constexpr float ref_level_lufs = -23.0f;  // 0 LU, more or less by definition.
396
397         StereoCompressor limiter;
398         std::atomic<float> limiter_threshold_dbfs{ref_level_dbfs + 4.0f};   // 4 dB.
399         std::atomic<bool> limiter_enabled{true};
400         std::unique_ptr<StereoCompressor> compressor[MAX_BUSES];
401         std::atomic<float> compressor_threshold_dbfs[MAX_BUSES];
402         std::atomic<bool> compressor_enabled[MAX_BUSES];
403
404         // Note: The values here are not in dB.
405         struct PeakHistory {
406                 float current_level = 0.0f;  // Peak of the last frame.
407                 float historic_peak = 0.0f;  // Highest peak since last reset; no falloff.
408                 float current_peak = 0.0f;  // Current peak of the peak meter.
409                 float last_peak = 0.0f;
410                 float age_seconds = 0.0f;   // Time since "last_peak" was set.
411         };
412         PeakHistory peak_history[MAX_BUSES][2];  // Separate for each channel. Under audio_mutex.
413
414         double final_makeup_gain = 1.0;  // Under compressor_mutex. Read/write by the user. Note: Not in dB, we want the numeric precision so that we can change it slowly.
415         bool final_makeup_gain_auto = true;  // Under compressor_mutex.
416
417         MappingMode current_mapping_mode;  // Under audio_mutex.
418         InputMapping input_mapping;  // Under audio_mutex.
419         std::atomic<float> fader_volume_db[MAX_BUSES] {{ 0.0f }};
420         std::atomic<bool> mute[MAX_BUSES] {{ false }};
421         float last_fader_volume_db[MAX_BUSES] { 0.0f };  // Under audio_mutex.
422         std::atomic<float> stereo_width[MAX_BUSES] {{ 0.0f }};  // Default 1.0f (is set in constructor).
423         std::atomic<float> eq_level_db[MAX_BUSES][NUM_EQ_BANDS] {{{ 0.0f }}};
424         float last_eq_level_db[MAX_BUSES][NUM_EQ_BANDS] {{ 0.0f }};
425
426         audio_level_callback_t audio_level_callback = nullptr;
427         state_changed_callback_t state_changed_callback = nullptr;
428         mutable std::mutex audio_measure_mutex;
429         Ebu_r128_proc r128;  // Under audio_measure_mutex.
430         CorrelationMeasurer correlation;  // Under audio_measure_mutex.
431         Resampler peak_resampler;  // Under audio_measure_mutex.
432         std::atomic<float> peak{0.0f};
433
434         // Metrics.
435         std::atomic<double> metric_audio_loudness_short_lufs{0.0 / 0.0};
436         std::atomic<double> metric_audio_loudness_integrated_lufs{0.0 / 0.0};
437         std::atomic<double> metric_audio_loudness_range_low_lufs{0.0 / 0.0};
438         std::atomic<double> metric_audio_loudness_range_high_lufs{0.0 / 0.0};
439         std::atomic<double> metric_audio_peak_dbfs{0.0 / 0.0};
440         std::atomic<double> metric_audio_final_makeup_gain_db{0.0};
441         std::atomic<double> metric_audio_correlation{0.0};
442
443         // These are all gauges corresponding to the elements of BusLevel.
444         // In a sense, they'd probably do better as histograms, but that's an
445         // awful lot of time series when you have many buses.
446         struct BusMetrics {
447                 std::vector<std::pair<std::string, std::string>> labels;
448                 std::atomic<double> current_level_dbfs[2]{{0.0/0.0},{0.0/0.0}};
449                 std::atomic<double> peak_level_dbfs[2]{{0.0/0.0},{0.0/0.0}};
450                 std::atomic<double> historic_peak_dbfs{0.0/0.0};
451                 std::atomic<double> gain_staging_db{0.0/0.0};
452                 std::atomic<double> compressor_attenuation_db{0.0/0.0};
453         };
454         std::unique_ptr<BusMetrics[]> bus_metrics;  // One for each bus in <input_mapping>.
455
456         DelayAnalyzerInterface *delay_analyzer = nullptr;
457
458         // A set of devices (potentially empty) that should be kept open even
459         // if they're not used in any bus. This allows the delay analyzer to
460         // make sure a given ALSA device is opened to tap into its data, even if
461         // there is no bus using it. (Non-ALSA devices are allowed to be here,
462         // but won't do anything.)
463         std::set<DeviceSpec> extra_devices;
464 };
465
466 extern AudioMixer *global_audio_mixer;
467
468 #endif  // !defined(_AUDIO_MIXER_H)