]> git.sesse.net Git - nageru/blob - nageru/mixer.cpp
827ab9fd9dfa4b41ca31649d7dcd6cb0d09c9434
[nageru] / nageru / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect.h>
8 #include <movit/effect_chain.h>
9 #include <movit/effect_util.h>
10 #include <movit/flat_input.h>
11 #include <movit/image_format.h>
12 #include <movit/init.h>
13 #include <movit/resource_pool.h>
14 #include <pthread.h>
15 #include <stdint.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <algorithm>
19 #include <chrono>
20 #include <condition_variable>
21 #include <cstddef>
22 #include <cstdint>
23 #include <memory>
24 #include <mutex>
25 #include <ratio>
26 #include <string>
27 #include <thread>
28 #include <utility>
29 #include <vector>
30
31 #include "DeckLinkAPI.h"
32 #include "LinuxCOM.h"
33 #include "alsa_output.h"
34 #include "basic_stats.h"
35 #include "bmusb/bmusb.h"
36 #include "bmusb/fake_capture.h"
37 #ifdef HAVE_CEF
38 #include "cef_capture.h"
39 #endif
40 #include "chroma_subsampler.h"
41 #include "shared/context.h"
42 #include "decklink_capture.h"
43 #include "decklink_output.h"
44 #include "defs.h"
45 #include "shared/disk_space_estimator.h"
46 #include "ffmpeg_capture.h"
47 #include "flags.h"
48 #include "image_input.h"
49 #include "input_mapping.h"
50 #include "shared/metrics.h"
51 #include "shared/va_display.h"
52 #include "mjpeg_encoder.h"
53 #include "pbo_frame_allocator.h"
54 #include "shared/ref_counted_gl_sync.h"
55 #include "resampling_queue.h"
56 #include "shared/timebase.h"
57 #include "timecode_renderer.h"
58 #include "v210_converter.h"
59 #include "video_encoder.h"
60
61 #undef Status
62 #include <google/protobuf/util/json_util.h>
63 #include "json.pb.h"
64
65 #ifdef HAVE_SRT
66 // Must come after CEF, since it includes <syslog.h>, which has #defines
67 // that conflict with CEF logging constants.
68 #include <srt/srt.h>
69 #endif
70
71 class IDeckLink;
72 class QOpenGLContext;
73
74 using namespace movit;
75 using namespace std;
76 using namespace std::chrono;
77 using namespace std::placeholders;
78 using namespace bmusb;
79
80 Mixer *global_mixer = nullptr;
81
82 namespace {
83
84 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
85 {
86         if (interlaced) {
87                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
88                         input_state->buffered_frames[card_index][frame_num] =
89                                 input_state->buffered_frames[card_index][frame_num - 1];
90                 }
91                 input_state->buffered_frames[card_index][0] = { frame, field_num };
92         } else {
93                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
94                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
95                 }
96         }
97 }
98
99 void ensure_texture_resolution(PBOFrameAllocator::Userdata *userdata, unsigned field, unsigned width, unsigned height, unsigned cbcr_width, unsigned cbcr_height, unsigned v210_width)
100 {
101         bool first;
102         switch (userdata->pixel_format) {
103         case PixelFormat_10BitYCbCr:
104                 first = userdata->tex_v210[field] == 0 || userdata->tex_444[field] == 0;
105                 break;
106         case PixelFormat_8BitYCbCr:
107                 first = userdata->tex_y[field] == 0 || userdata->tex_cbcr[field] == 0;
108                 break;
109         case PixelFormat_8BitBGRA:
110                 first = userdata->tex_rgba[field] == 0;
111                 break;
112         case PixelFormat_8BitYCbCrPlanar:
113                 first = userdata->tex_y[field] == 0 || userdata->tex_cb[field] == 0 || userdata->tex_cr[field] == 0;
114                 break;
115         default:
116                 assert(false);
117         }
118
119         const bool recreate_main_texture =
120                 first ||
121                 width != userdata->last_width[field] ||
122                 height != userdata->last_height[field] ||
123                 cbcr_width != userdata->last_cbcr_width[field] ||
124                 cbcr_height != userdata->last_cbcr_height[field];
125         const bool recreate_v210_texture =
126                 global_flags.ten_bit_input &&
127                 (first || v210_width != userdata->last_v210_width[field] || height != userdata->last_height[field]);
128
129         if (recreate_main_texture) {
130                 // We changed resolution since last use of this texture, so we need to create
131                 // a new object. Note that this each card has its own PBOFrameAllocator,
132                 // we don't need to worry about these flip-flopping between resolutions.
133                 switch (userdata->pixel_format) {
134                 case PixelFormat_10BitYCbCr:
135                         glBindTexture(GL_TEXTURE_2D, userdata->tex_444[field]);
136                         check_error();
137                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB10_A2, width, height, 0, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, nullptr);
138                         check_error();
139                         break;
140                 case PixelFormat_8BitYCbCr: {
141                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
142                         check_error();
143                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
144                         check_error();
145                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
146                         check_error();
147                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, width, height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
148                         check_error();
149                         break;
150                 }
151                 case PixelFormat_8BitYCbCrPlanar: {
152                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
153                         check_error();
154                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, width, height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
155                         check_error();
156                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cb[field]);
157                         check_error();
158                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, cbcr_width, cbcr_height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
159                         check_error();
160                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cr[field]);
161                         check_error();
162                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, cbcr_width, cbcr_height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
163                         check_error();
164                         break;
165                 }
166                 case PixelFormat_8BitBGRA:
167                         glBindTexture(GL_TEXTURE_2D, userdata->tex_rgba[field]);
168                         check_error();
169                         // NOTE: sRGB may be disabled by sRGBSwitchingFlatInput.
170                         glTexImage2D(GL_TEXTURE_2D, 0, GL_SRGB8_ALPHA8, width, height, 0, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, nullptr);
171                         check_error();
172                         break;
173                 default:
174                         assert(false);
175                 }
176                 userdata->last_width[field] = width;
177                 userdata->last_height[field] = height;
178                 userdata->last_cbcr_width[field] = cbcr_width;
179                 userdata->last_cbcr_height[field] = cbcr_height;
180         }
181         if (recreate_v210_texture) {
182                 // Same as above; we need to recreate the texture.
183                 glBindTexture(GL_TEXTURE_2D, userdata->tex_v210[field]);
184                 check_error();
185                 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB10_A2, v210_width, height, 0, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, nullptr);
186                 check_error();
187                 userdata->last_v210_width[field] = v210_width;
188                 userdata->last_height[field] = height;
189         }
190 }
191
192 void upload_texture(GLuint tex, GLuint width, GLuint height, GLuint stride, bool interlaced_stride, GLenum format, GLenum type, GLintptr offset)
193 {
194         if (interlaced_stride) {
195                 stride *= 2;
196         }
197         if (global_flags.flush_pbos) {
198                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, offset, stride * height);
199                 check_error();
200         }
201
202         glBindTexture(GL_TEXTURE_2D, tex);
203         check_error();
204         if (interlaced_stride) {
205                 glPixelStorei(GL_UNPACK_ROW_LENGTH, width * 2);
206                 check_error();
207         } else {
208                 glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
209                 check_error();
210         }
211
212         glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, type, BUFFER_OFFSET(offset));
213         check_error();
214         glBindTexture(GL_TEXTURE_2D, 0);
215         check_error();
216         glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
217         check_error();
218 }
219
220 }  // namespace
221
222 void JitterHistory::register_metrics(const vector<pair<string, string>> &labels)
223 {
224         global_metrics.add("input_underestimated_jitter_frames", labels, &metric_input_underestimated_jitter_frames);
225         global_metrics.add("input_estimated_max_jitter_seconds", labels, &metric_input_estimated_max_jitter_seconds, Metrics::TYPE_GAUGE);
226 }
227
228 void JitterHistory::unregister_metrics(const vector<pair<string, string>> &labels)
229 {
230         global_metrics.remove("input_underestimated_jitter_frames", labels);
231         global_metrics.remove("input_estimated_max_jitter_seconds", labels);
232 }
233
234 void JitterHistory::frame_arrived(steady_clock::time_point now, int64_t frame_duration, size_t dropped_frames)
235 {
236         if (expected_timestamp > steady_clock::time_point::min()) {
237                 expected_timestamp += dropped_frames * nanoseconds(frame_duration * 1000000000 / TIMEBASE);
238                 double jitter_seconds = fabs(duration<double>(expected_timestamp - now).count());
239                 history.push_back(orders.insert(jitter_seconds));
240                 if (jitter_seconds > estimate_max_jitter()) {
241                         ++metric_input_underestimated_jitter_frames;
242                 }
243
244                 metric_input_estimated_max_jitter_seconds = estimate_max_jitter();
245
246                 if (history.size() > history_length) {
247                         orders.erase(history.front());
248                         history.pop_front();
249                 }
250                 assert(history.size() <= history_length);
251         }
252         expected_timestamp = now + nanoseconds(frame_duration * 1000000000 / TIMEBASE);
253 }
254
255 double JitterHistory::estimate_max_jitter() const
256 {
257         if (orders.empty()) {
258                 return 0.0;
259         }
260         size_t elem_idx = lrint((orders.size() - 1) * percentile);
261         if (percentile <= 0.5) {
262                 return *next(orders.begin(), elem_idx) * multiplier;
263         } else {
264                 return *prev(orders.end(), orders.size() - elem_idx) * multiplier;
265         }
266 }
267
268 void QueueLengthPolicy::register_metrics(const vector<pair<string, string>> &labels)
269 {
270         global_metrics.add("input_queue_safe_length_frames", labels, &metric_input_queue_safe_length_frames, Metrics::TYPE_GAUGE);
271 }
272
273 void QueueLengthPolicy::unregister_metrics(const vector<pair<string, string>> &labels)
274 {
275         global_metrics.remove("input_queue_safe_length_frames", labels);
276 }
277
278 void QueueLengthPolicy::update_policy(steady_clock::time_point now,
279                                       steady_clock::time_point expected_next_frame,
280                                       int64_t input_frame_duration,
281                                       int64_t master_frame_duration,
282                                       double max_input_card_jitter_seconds,
283                                       double max_master_card_jitter_seconds)
284 {
285         double input_frame_duration_seconds = input_frame_duration / double(TIMEBASE);
286         double master_frame_duration_seconds = master_frame_duration / double(TIMEBASE);
287
288         // Figure out when we can expect the next frame for this card, assuming
289         // worst-case jitter (ie., the frame is maximally late).
290         double seconds_until_next_frame = max(duration<double>(expected_next_frame - now).count() + max_input_card_jitter_seconds, 0.0);
291
292         // How many times are the master card expected to tick in that time?
293         // We assume the master clock has worst-case jitter but not any rate
294         // discrepancy, ie., it ticks as early as possible every time, but not
295         // cumulatively.
296         double frames_needed = (seconds_until_next_frame + max_master_card_jitter_seconds) / master_frame_duration_seconds;
297
298         // As a special case, if the master card ticks faster than the input card,
299         // we expect the queue to drain by itself even without dropping. But if
300         // the difference is small (e.g. 60 Hz master and 59.94 input), it would
301         // go slowly enough that the effect wouldn't really be appreciable.
302         // We account for this by looking at the situation five frames ahead,
303         // assuming everything else is the same.
304         double frames_allowed;
305         if (master_frame_duration < input_frame_duration) {
306                 frames_allowed = frames_needed + 5 * (input_frame_duration_seconds - master_frame_duration_seconds) / master_frame_duration_seconds;
307         } else {
308                 frames_allowed = frames_needed;
309         }
310
311         safe_queue_length = max<int>(floor(frames_allowed), 0);
312         metric_input_queue_safe_length_frames = safe_queue_length;
313 }
314
315 Mixer::Mixer(const QSurfaceFormat &format)
316         : httpd(),
317           mixer_surface(create_surface(format)),
318           h264_encoder_surface(create_surface(format)),
319           decklink_output_surface(create_surface(format)),
320           image_update_surface(create_surface(format))
321 {
322         memcpy(ycbcr_interpretation, global_flags.ycbcr_interpretation, sizeof(ycbcr_interpretation));
323         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
324         check_error();
325
326         if (!epoxy_has_gl_extension("GL_EXT_texture_sRGB_decode") ||
327             !epoxy_has_gl_extension("GL_ARB_sampler_objects")) {
328                 fprintf(stderr, "Nageru requires GL_EXT_texture_sRGB_decode and GL_ARB_sampler_objects to run.\n");
329                 exit(1);
330         }
331
332         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
333         // will be halved when sampling them, and we need to compensate here.
334         movit_texel_subpixel_precision /= 2.0;
335
336         resource_pool.reset(new ResourcePool);
337         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
338                 output_channel[i].parent = this;
339                 output_channel[i].channel = i;
340         }
341
342         ImageFormat inout_format;
343         inout_format.color_space = COLORSPACE_sRGB;
344         inout_format.gamma_curve = GAMMA_sRGB;
345
346         // Matches the 4:2:0 format created by the main chain.
347         YCbCrFormat ycbcr_format;
348         ycbcr_format.chroma_subsampling_x = 2;
349         ycbcr_format.chroma_subsampling_y = 2;
350         if (global_flags.ycbcr_rec709_coefficients) {
351                 ycbcr_format.luma_coefficients = YCBCR_REC_709;
352         } else {
353                 ycbcr_format.luma_coefficients = YCBCR_REC_601;
354         }
355         ycbcr_format.full_range = false;
356         ycbcr_format.num_levels = 1 << global_flags.x264_bit_depth;
357         ycbcr_format.cb_x_position = 0.0f;
358         ycbcr_format.cr_x_position = 0.0f;
359         ycbcr_format.cb_y_position = 0.5f;
360         ycbcr_format.cr_y_position = 0.5f;
361
362         // Initialize the neutral colors to sane values.
363         for (unsigned i = 0; i < MAX_VIDEO_CARDS; ++i) {
364                 last_received_neutral_color[i] = RGBTriplet(1.0f, 1.0f, 1.0f);
365         }
366
367         // Display chain; shows the live output produced by the main chain (or rather, a copy of it).
368         display_chain.reset(new EffectChain(global_flags.width, global_flags.height, resource_pool.get()));
369         check_error();
370         GLenum type = global_flags.x264_bit_depth > 8 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE;
371         display_input = new YCbCrInput(inout_format, ycbcr_format, global_flags.width, global_flags.height, YCBCR_INPUT_SPLIT_Y_AND_CBCR, type);
372         display_chain->add_input(display_input);
373         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
374         display_chain->set_dither_bits(0);  // Don't bother.
375         display_chain->finalize();
376
377         video_encoder.reset(new VideoEncoder(resource_pool.get(), h264_encoder_surface, global_flags.va_display, global_flags.width, global_flags.height, &httpd, global_disk_space_estimator));
378         if (!global_flags.card_to_mjpeg_stream_export.empty()) {
379                 mjpeg_encoder.reset(new MJPEGEncoder(&httpd, global_flags.va_display));
380         }
381
382         // Must be instantiated after VideoEncoder has initialized global_flags.use_zerocopy.
383         theme.reset(new Theme(global_flags.theme_filename, global_flags.theme_dirs, resource_pool.get()));
384
385         // Must be instantiated after the theme, as the theme decides the number of FFmpeg inputs.
386         std::vector<FFmpegCapture *> video_inputs = theme->get_video_inputs();
387         audio_mixer.reset(new AudioMixer);
388
389         httpd.add_endpoint("/channels", bind(&Mixer::get_channels_json, this), HTTPD::ALLOW_ALL_ORIGINS);
390         for (int channel_idx = 0; channel_idx < theme->get_num_channels(); ++channel_idx) {
391                 char url[256];
392                 snprintf(url, sizeof(url), "/channels/%d/color", channel_idx + 2);
393                 httpd.add_endpoint(url, bind(&Mixer::get_channel_color_http, this, unsigned(channel_idx + 2)), HTTPD::ALLOW_ALL_ORIGINS);
394         }
395
396         // Start listening for clients only once VideoEncoder has written its header, if any.
397         httpd.start(global_flags.http_port);
398
399         // First try initializing the then PCI devices, then USB, then
400         // fill up with fake cards until we have the desired number of cards.
401         unsigned num_pci_devices = 0;
402         unsigned card_index = 0;
403
404         {
405                 IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
406                 if (decklink_iterator != nullptr) {
407                         for ( ; card_index < unsigned(global_flags.max_num_cards); ++card_index) {
408                                 IDeckLink *decklink;
409                                 if (decklink_iterator->Next(&decklink) != S_OK) {
410                                         break;
411                                 }
412
413                                 DeckLinkCapture *capture = new DeckLinkCapture(decklink, card_index);
414                                 DeckLinkOutput *output = new DeckLinkOutput(resource_pool.get(), decklink_output_surface, global_flags.width, global_flags.height, card_index);
415                                 if (!output->set_device(decklink)) {
416                                         delete output;
417                                         output = nullptr;
418                                 }
419                                 configure_card(card_index, capture, CardType::LIVE_CARD, output, /*is_srt_card=*/false);
420                                 ++num_pci_devices;
421                         }
422                         decklink_iterator->Release();
423                         fprintf(stderr, "Found %u DeckLink PCI card(s).\n", num_pci_devices);
424                 } else {
425                         fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
426                 }
427         }
428
429         unsigned num_usb_devices = BMUSBCapture::num_cards();
430         for (unsigned usb_card_index = 0; usb_card_index < num_usb_devices && card_index < unsigned(global_flags.max_num_cards); ++usb_card_index, ++card_index) {
431                 BMUSBCapture *capture = new BMUSBCapture(usb_card_index);
432                 capture->set_card_disconnected_callback(bind(&Mixer::bm_hotplug_remove, this, card_index));
433                 configure_card(card_index, capture, CardType::LIVE_CARD, /*output=*/nullptr, /*is_srt_card=*/false);
434         }
435         fprintf(stderr, "Found %u USB card(s).\n", num_usb_devices);
436
437         // Fill up with fake cards for as long as we can, so that the FFmpeg
438         // and HTML cards always come last.
439         unsigned num_fake_cards = 0;
440 #ifdef HAVE_CEF
441         size_t num_html_inputs = theme->get_html_inputs().size();
442 #else
443         size_t num_html_inputs = 0;
444 #endif
445         for ( ; card_index < MAX_VIDEO_CARDS - video_inputs.size() - num_html_inputs; ++card_index) {
446                 // Only bother to activate fake capture cards to satisfy the minimum.
447                 bool is_active = card_index < unsigned(global_flags.min_num_cards) || cards[card_index].force_active;
448                 if (is_active) {
449                         FakeCapture *capture = new FakeCapture(global_flags.width, global_flags.height, FAKE_FPS, OUTPUT_FREQUENCY, card_index, global_flags.fake_cards_audio);
450                         configure_card(card_index, capture, CardType::FAKE_CAPTURE, /*output=*/nullptr, /*is_srt_card=*/false);
451                         ++num_fake_cards;
452                 } else {
453                         configure_card(card_index, nullptr, CardType::FAKE_CAPTURE, /*output=*/nullptr, /*is_srt_card=*/false);
454                 }
455         }
456
457         if (num_fake_cards > 0) {
458                 fprintf(stderr, "Initialized %u fake cards.\n", num_fake_cards);
459         }
460
461         // Initialize all video inputs the theme asked for.
462         for (unsigned video_card_index = 0; video_card_index < video_inputs.size(); ++card_index, ++video_card_index) {
463                 if (card_index >= MAX_VIDEO_CARDS) {
464                         fprintf(stderr, "ERROR: Not enough card slots available for the videos the theme requested.\n");
465                         abort();
466                 }
467                 configure_card(card_index, video_inputs[video_card_index], CardType::FFMPEG_INPUT, /*output=*/nullptr, /*is_srt_card=*/false);
468                 video_inputs[video_card_index]->set_card_index(card_index);
469         }
470         num_video_inputs = video_inputs.size();
471
472 #ifdef HAVE_CEF
473         // Same, for HTML inputs.
474         std::vector<CEFCapture *> html_inputs = theme->get_html_inputs();
475         for (unsigned html_card_index = 0; html_card_index < html_inputs.size(); ++card_index, ++html_card_index) {
476                 if (card_index >= MAX_VIDEO_CARDS) {
477                         fprintf(stderr, "ERROR: Not enough card slots available for the HTML inputs the theme requested.\n");
478                         abort();
479                 }
480                 configure_card(card_index, html_inputs[html_card_index], CardType::CEF_INPUT, /*output=*/nullptr, /*is_srt_card=*/false);
481                 html_inputs[html_card_index]->set_card_index(card_index);
482         }
483         num_html_inputs = html_inputs.size();
484 #endif
485
486         BMUSBCapture::set_card_connected_callback(bind(&Mixer::bm_hotplug_add, this, _1));
487         BMUSBCapture::start_bm_thread();
488
489 #ifdef HAVE_SRT
490         if (global_flags.srt_port >= 0) {
491                 start_srt();
492         }
493 #endif
494
495         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
496                 cards[card_index].queue_length_policy.reset(card_index);
497         }
498
499         chroma_subsampler.reset(new ChromaSubsampler(resource_pool.get()));
500
501         if (global_flags.ten_bit_input) {
502                 if (!v210Converter::has_hardware_support()) {
503                         fprintf(stderr, "ERROR: --ten-bit-input requires support for OpenGL compute shaders\n");
504                         fprintf(stderr, "       (OpenGL 4.3, or GL_ARB_compute_shader + GL_ARB_shader_image_load_store).\n");
505                         abort();
506                 }
507                 v210_converter.reset(new v210Converter());
508
509                 // These are all the widths listed in the Blackmagic SDK documentation
510                 // (section 2.7.3, “Display Modes”).
511                 v210_converter->precompile_shader(720);
512                 v210_converter->precompile_shader(1280);
513                 v210_converter->precompile_shader(1920);
514                 v210_converter->precompile_shader(2048);
515                 v210_converter->precompile_shader(3840);
516                 v210_converter->precompile_shader(4096);
517         }
518         if (global_flags.ten_bit_output) {
519                 if (!v210Converter::has_hardware_support()) {
520                         fprintf(stderr, "ERROR: --ten-bit-output requires support for OpenGL compute shaders\n");
521                         fprintf(stderr, "       (OpenGL 4.3, or GL_ARB_compute_shader + GL_ARB_shader_image_load_store).\n");
522                         abort();
523                 }
524         }
525
526         timecode_renderer.reset(new TimecodeRenderer(resource_pool.get(), global_flags.width, global_flags.height));
527         display_timecode_in_stream = global_flags.display_timecode_in_stream;
528         display_timecode_on_stdout = global_flags.display_timecode_on_stdout;
529
530         if (global_flags.enable_alsa_output) {
531                 alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
532         }
533         if (global_flags.output_card != -1) {
534                 desired_output_card_index = global_flags.output_card;
535                 set_output_card_internal(global_flags.output_card);
536         }
537
538         output_jitter_history.register_metrics({{ "card", "output" }});
539
540         ImageInput::start_update_thread(image_update_surface);
541 }
542
543 Mixer::~Mixer()
544 {
545         ImageInput::end_update_thread();
546
547         if (mjpeg_encoder != nullptr) {
548                 mjpeg_encoder->stop();
549         }
550         httpd.stop();
551         BMUSBCapture::stop_bm_thread();
552
553         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
554                 if (cards[card_index].capture != nullptr) {  // Active.
555                         cards[card_index].capture->stop_dequeue_thread();
556                 }
557                 if (cards[card_index].output) {
558                         cards[card_index].output->end_output();
559                         cards[card_index].output.reset();
560                 }
561         }
562
563         video_encoder.reset(nullptr);
564 }
565
566 void Mixer::configure_card(unsigned card_index, CaptureInterface *capture, CardType card_type, DeckLinkOutput *output, bool is_srt_card)
567 {
568         bool is_active = capture != nullptr;
569         if (is_active) {
570                 printf("Configuring card %d...\n", card_index);
571         } else {
572                 assert(card_type == CardType::FAKE_CAPTURE);
573         }
574
575         CaptureCard *card = &cards[card_index];
576         if (card->capture != nullptr) {
577                 card_mutex.unlock();  // The dequeue thread could be waiting for bm_frame().
578                 card->capture->stop_dequeue_thread();
579                 card_mutex.lock();
580         }
581         card->capture.reset(capture);
582         card->is_fake_capture = (card_type == CardType::FAKE_CAPTURE);
583         if (card->is_fake_capture) {
584                 card->fake_capture_counter = fake_capture_counter++;
585         }
586         card->is_cef_capture = (card_type == CardType::CEF_INPUT);
587         card->may_have_dropped_last_frame = false;
588         card->type = card_type;
589         if (card->output.get() != output) {
590                 card->output.reset(output);
591         }
592
593         PixelFormat pixel_format;
594         if (card_type == CardType::FFMPEG_INPUT) {
595                 pixel_format = capture->get_current_pixel_format();
596         } else if (card_type == CardType::CEF_INPUT) {
597                 pixel_format = PixelFormat_8BitBGRA;
598         } else if (global_flags.ten_bit_input) {
599                 pixel_format = PixelFormat_10BitYCbCr;
600         } else {
601                 pixel_format = PixelFormat_8BitYCbCr;
602         }
603
604         if (is_active) {
605                 card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
606                 if (card->frame_allocator == nullptr) {
607                         card->frame_allocator.reset(new PBOFrameAllocator(pixel_format, 8 << 20, global_flags.width, global_flags.height, card_index, mjpeg_encoder.get()));  // 8 MB.
608                 } else {
609                         // The format could have changed, but we cannot reset the allocator
610                         // and create a new one from scratch, since there may be allocated
611                         // frames from it that expect to call release_frame() on it.
612                         // Instead, ask the allocator to create new frames for us and discard
613                         // any old ones as they come back. This takes the mutex while
614                         // allocating, but nothing should really be sending frames in there
615                         // right now anyway (start_bm_capture() has not been called yet).
616                         card->frame_allocator->reconfigure(pixel_format, 8 << 20, global_flags.width, global_flags.height, card_index, mjpeg_encoder.get());
617                 }
618                 card->capture->set_video_frame_allocator(card->frame_allocator.get());
619                 if (card->surface == nullptr) {
620                         card->surface = create_surface_with_same_format(mixer_surface);
621                 }
622                 while (!card->new_frames.empty()) card->new_frames.pop_front();
623                 card->last_timecode = -1;
624                 card->capture->set_pixel_format(pixel_format);
625                 card->capture->configure_card();
626
627                 // NOTE: start_bm_capture() happens in thread_func().
628         }
629
630         if (is_srt_card) {
631                 assert(card_type == CardType::FFMPEG_INPUT);
632         }
633
634         DeviceSpec device;
635         device = DeviceSpec{InputSourceType::CAPTURE_CARD, card_index};
636         audio_mixer->reset_resampler(device);
637         unsigned num_channels = card_type == CardType::LIVE_CARD ? 8 : 2;
638         if (is_active) {
639                 audio_mixer->set_device_parameters(device, card->capture->get_description(), card_type, num_channels, /*active=*/true);
640         } else {
641                 // Note: Keeps the previous name, if any.
642                 char name[32];
643                 snprintf(name, sizeof(name), "Fake card %u", card_index + 1);
644                 audio_mixer->set_device_parameters(device, name, card_type, num_channels, /*active=*/false);
645         }
646         audio_mixer->trigger_state_changed_callback();
647
648         // Unregister old metrics, if any.
649         if (!card->labels.empty()) {
650                 const vector<pair<string, string>> &labels = card->labels;
651                 card->jitter_history.unregister_metrics(labels);
652                 card->queue_length_policy.unregister_metrics(labels);
653                 global_metrics.remove_if_exists("input_received_frames", labels);
654                 global_metrics.remove_if_exists("input_dropped_frames_jitter", labels);
655                 global_metrics.remove_if_exists("input_dropped_frames_error", labels);
656                 global_metrics.remove_if_exists("input_dropped_frames_resets", labels);
657                 global_metrics.remove_if_exists("input_queue_length_frames", labels);
658                 global_metrics.remove_if_exists("input_queue_duped_frames", labels);
659
660                 global_metrics.remove_if_exists("input_has_signal_bool", labels);
661                 global_metrics.remove_if_exists("input_is_connected_bool", labels);
662                 global_metrics.remove_if_exists("input_interlaced_bool", labels);
663                 global_metrics.remove_if_exists("input_width_pixels", labels);
664                 global_metrics.remove_if_exists("input_height_pixels", labels);
665                 global_metrics.remove_if_exists("input_frame_rate_nom", labels);
666                 global_metrics.remove_if_exists("input_frame_rate_den", labels);
667                 global_metrics.remove_if_exists("input_sample_rate_hz", labels);
668
669                 // SRT metrics.
670
671                 // Global measurements (counters).
672                 global_metrics.remove_if_exists("srt_uptime_seconds", labels);
673                 global_metrics.remove_if_exists("srt_send_duration_seconds", labels);
674                 global_metrics.remove_if_exists("srt_sent_bytes", labels);
675                 global_metrics.remove_if_exists("srt_received_bytes", labels);
676
677                 vector<pair<string, string>> packet_labels = card->labels;
678                 packet_labels.emplace_back("type", "normal");
679                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
680                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
681
682                 packet_labels.back().second = "lost";
683                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
684                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
685
686                 packet_labels.back().second = "retransmitted";
687                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
688                 global_metrics.remove_if_exists("srt_sent_bytes", packet_labels);
689
690                 packet_labels.back().second = "ack";
691                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
692                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
693
694                 packet_labels.back().second = "nak";
695                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
696                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
697
698                 packet_labels.back().second = "dropped";
699                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
700                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
701                 global_metrics.remove_if_exists("srt_sent_bytes", packet_labels);
702                 global_metrics.remove_if_exists("srt_received_bytes", packet_labels);
703
704                 packet_labels.back().second = "undecryptable";
705                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
706                 global_metrics.remove_if_exists("srt_received_bytes", packet_labels);
707
708                 global_metrics.remove_if_exists("srt_filter_sent_extra_packets", labels);
709                 global_metrics.remove_if_exists("srt_filter_received_extra_packets", labels);
710                 global_metrics.remove_if_exists("srt_filter_received_rebuilt_packets", labels);
711                 global_metrics.remove_if_exists("srt_filter_received_lost_packets", labels);
712
713                 // Instant measurements (gauges).
714                 global_metrics.remove_if_exists("srt_packet_sending_period_seconds", labels);
715                 global_metrics.remove_if_exists("srt_flow_window_packets", labels);
716                 global_metrics.remove_if_exists("srt_congestion_window_packets", labels);
717                 global_metrics.remove_if_exists("srt_flight_size_packets", labels);
718                 global_metrics.remove_if_exists("srt_rtt_seconds", labels);
719                 global_metrics.remove_if_exists("srt_estimated_bandwidth_bits_per_second", labels);
720                 global_metrics.remove_if_exists("srt_bandwidth_ceiling_bits_per_second", labels);
721                 global_metrics.remove_if_exists("srt_send_buffer_available_bytes", labels);
722                 global_metrics.remove_if_exists("srt_receive_buffer_available_bytes", labels);
723                 global_metrics.remove_if_exists("srt_mss_bytes", labels);
724
725                 global_metrics.remove_if_exists("srt_sender_unacked_packets", labels);
726                 global_metrics.remove_if_exists("srt_sender_unacked_bytes", labels);
727                 global_metrics.remove_if_exists("srt_sender_unacked_timespan_seconds", labels);
728                 global_metrics.remove_if_exists("srt_sender_delivery_delay_seconds", labels);
729
730                 global_metrics.remove_if_exists("srt_receiver_unacked_packets", labels);
731                 global_metrics.remove_if_exists("srt_receiver_unacked_bytes", labels);
732                 global_metrics.remove_if_exists("srt_receiver_unacked_timespan_seconds", labels);
733                 global_metrics.remove_if_exists("srt_receiver_delivery_delay_seconds", labels);
734         }
735
736         if (is_active) {
737                 // Register metrics.
738                 vector<pair<string, string>> labels;
739                 char card_name[64];
740                 snprintf(card_name, sizeof(card_name), "%d", card_index);
741                 labels.emplace_back("card", card_name);
742
743                 switch (card_type) {
744                 case CardType::LIVE_CARD:
745                         labels.emplace_back("cardtype", "live");
746                         break;
747                 case CardType::FAKE_CAPTURE:
748                         labels.emplace_back("cardtype", "fake");
749                         break;
750                 case CardType::FFMPEG_INPUT:
751                         if (is_srt_card) {
752                                 labels.emplace_back("cardtype", "srt");
753                         } else {
754                                 labels.emplace_back("cardtype", "ffmpeg");
755                         }
756                         break;
757                 case CardType::CEF_INPUT:
758                         labels.emplace_back("cardtype", "cef");
759                         break;
760                 default:
761                         assert(false);
762                 }
763                 card->jitter_history.register_metrics(labels);
764                 card->queue_length_policy.register_metrics(labels);
765                 global_metrics.add("input_received_frames", labels, &card->metric_input_received_frames);
766                 global_metrics.add("input_dropped_frames_jitter", labels, &card->metric_input_dropped_frames_jitter);
767                 global_metrics.add("input_dropped_frames_error", labels, &card->metric_input_dropped_frames_error);
768                 global_metrics.add("input_dropped_frames_resets", labels, &card->metric_input_resets);
769                 global_metrics.add("input_queue_length_frames", labels, &card->metric_input_queue_length_frames, Metrics::TYPE_GAUGE);
770                 global_metrics.add("input_queue_duped_frames", labels, &card->metric_input_duped_frames);
771
772                 global_metrics.add("input_has_signal_bool", labels, &card->metric_input_has_signal_bool, Metrics::TYPE_GAUGE);
773                 global_metrics.add("input_is_connected_bool", labels, &card->metric_input_is_connected_bool, Metrics::TYPE_GAUGE);
774                 global_metrics.add("input_interlaced_bool", labels, &card->metric_input_interlaced_bool, Metrics::TYPE_GAUGE);
775                 global_metrics.add("input_width_pixels", labels, &card->metric_input_width_pixels, Metrics::TYPE_GAUGE);
776                 global_metrics.add("input_height_pixels", labels, &card->metric_input_height_pixels, Metrics::TYPE_GAUGE);
777                 global_metrics.add("input_frame_rate_nom", labels, &card->metric_input_frame_rate_nom, Metrics::TYPE_GAUGE);
778                 global_metrics.add("input_frame_rate_den", labels, &card->metric_input_frame_rate_den, Metrics::TYPE_GAUGE);
779                 global_metrics.add("input_sample_rate_hz", labels, &card->metric_input_sample_rate_hz, Metrics::TYPE_GAUGE);
780
781                 if (is_srt_card) {
782                         // Global measurements (counters).
783                         global_metrics.add("srt_uptime_seconds", labels, &card->metric_srt_uptime_seconds);
784                         global_metrics.add("srt_send_duration_seconds", labels, &card->metric_srt_send_duration_seconds);
785                         global_metrics.add("srt_sent_bytes", labels, &card->metric_srt_sent_bytes);
786                         global_metrics.add("srt_received_bytes", labels, &card->metric_srt_received_bytes);
787
788                         vector<pair<string, string>> packet_labels = labels;
789                         packet_labels.emplace_back("type", "normal");
790                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_normal);
791                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_normal);
792
793                         packet_labels.back().second = "lost";
794                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_lost);
795                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_lost);
796
797                         packet_labels.back().second = "retransmitted";
798                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_retransmitted);
799                         global_metrics.add("srt_sent_bytes", packet_labels, &card->metric_srt_sent_bytes_retransmitted);
800
801                         packet_labels.back().second = "ack";
802                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_ack);
803                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_ack);
804
805                         packet_labels.back().second = "nak";
806                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_nak);
807                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_nak);
808
809                         packet_labels.back().second = "dropped";
810                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_dropped);
811                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_dropped);
812                         global_metrics.add("srt_sent_bytes", packet_labels, &card->metric_srt_sent_bytes_dropped);
813                         global_metrics.add("srt_received_bytes", packet_labels, &card->metric_srt_received_bytes_dropped);
814
815                         packet_labels.back().second = "undecryptable";
816                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_undecryptable);
817                         global_metrics.add("srt_received_bytes", packet_labels, &card->metric_srt_received_bytes_undecryptable);
818
819                         global_metrics.add("srt_filter_sent_extra_packets", labels, &card->metric_srt_filter_sent_packets);
820                         global_metrics.add("srt_filter_received_extra_packets", labels, &card->metric_srt_filter_received_extra_packets);
821                         global_metrics.add("srt_filter_received_rebuilt_packets", labels, &card->metric_srt_filter_received_rebuilt_packets);
822                         global_metrics.add("srt_filter_received_lost_packets", labels, &card->metric_srt_filter_received_lost_packets);
823
824                         // Instant measurements (gauges).
825                         global_metrics.add("srt_packet_sending_period_seconds", labels, &card->metric_srt_packet_sending_period_seconds, Metrics::TYPE_GAUGE);
826                         global_metrics.add("srt_flow_window_packets", labels, &card->metric_srt_flow_window_packets, Metrics::TYPE_GAUGE);
827                         global_metrics.add("srt_congestion_window_packets", labels, &card->metric_srt_congestion_window_packets, Metrics::TYPE_GAUGE);
828                         global_metrics.add("srt_flight_size_packets", labels, &card->metric_srt_flight_size_packets, Metrics::TYPE_GAUGE);
829                         global_metrics.add("srt_rtt_seconds", labels, &card->metric_srt_rtt_seconds, Metrics::TYPE_GAUGE);
830                         global_metrics.add("srt_estimated_bandwidth_bits_per_second", labels, &card->metric_srt_estimated_bandwidth_bits_per_second, Metrics::TYPE_GAUGE);
831                         global_metrics.add("srt_bandwidth_ceiling_bits_per_second", labels, &card->metric_srt_bandwidth_ceiling_bits_per_second, Metrics::TYPE_GAUGE);
832                         global_metrics.add("srt_send_buffer_available_bytes", labels, &card->metric_srt_send_buffer_available_bytes, Metrics::TYPE_GAUGE);
833                         global_metrics.add("srt_receive_buffer_available_bytes", labels, &card->metric_srt_receive_buffer_available_bytes, Metrics::TYPE_GAUGE);
834                         global_metrics.add("srt_mss_bytes", labels, &card->metric_srt_mss_bytes, Metrics::TYPE_GAUGE);
835
836                         global_metrics.add("srt_sender_unacked_packets", labels, &card->metric_srt_sender_unacked_packets, Metrics::TYPE_GAUGE);
837                         global_metrics.add("srt_sender_unacked_bytes", labels, &card->metric_srt_sender_unacked_bytes, Metrics::TYPE_GAUGE);
838                         global_metrics.add("srt_sender_unacked_timespan_seconds", labels, &card->metric_srt_sender_unacked_timespan_seconds, Metrics::TYPE_GAUGE);
839                         global_metrics.add("srt_sender_delivery_delay_seconds", labels, &card->metric_srt_sender_delivery_delay_seconds, Metrics::TYPE_GAUGE);
840
841                         global_metrics.add("srt_receiver_unacked_packets", labels, &card->metric_srt_receiver_unacked_packets, Metrics::TYPE_GAUGE);
842                         global_metrics.add("srt_receiver_unacked_bytes", labels, &card->metric_srt_receiver_unacked_bytes, Metrics::TYPE_GAUGE);
843                         global_metrics.add("srt_receiver_unacked_timespan_seconds", labels, &card->metric_srt_receiver_unacked_timespan_seconds, Metrics::TYPE_GAUGE);
844                         global_metrics.add("srt_receiver_delivery_delay_seconds", labels, &card->metric_srt_receiver_delivery_delay_seconds, Metrics::TYPE_GAUGE);
845                 }
846
847                 card->labels = labels;
848         } else {
849                 card->labels.clear();
850         }
851 }
852
853 void Mixer::set_output_card_internal(int card_index)
854 {
855         // We don't really need to take card_mutex, since we're in the mixer
856         // thread and don't mess with any queues (which is the only thing that happens
857         // from other threads), but it's probably the safest in the long run.
858         unique_lock<mutex> lock(card_mutex);
859         if (output_card_index != -1) {
860                 // Switch the old card from output to input.
861                 CaptureCard *old_card = &cards[output_card_index];
862                 old_card->output->end_output();
863
864                 // Stop the fake card that we put into place.
865                 // This needs to _not_ happen under the mutex, to avoid deadlock
866                 // (delivering the last frame needs to take the mutex).
867                 CaptureInterface *fake_capture = old_card->capture.get();
868                 lock.unlock();
869                 fake_capture->stop_dequeue_thread();
870                 lock.lock();
871                 old_card->capture = move(old_card->parked_capture);  // TODO: reset the metrics
872                 old_card->is_fake_capture = false;
873                 old_card->capture->start_bm_capture();
874         }
875         if (card_index != -1) {
876                 CaptureCard *card = &cards[card_index];
877                 CaptureInterface *capture = card->capture.get();
878                 // TODO: DeckLinkCapture::stop_dequeue_thread can actually take
879                 // several seconds to complete (blocking on DisableVideoInput);
880                 // see if we can maybe do it asynchronously.
881                 lock.unlock();
882                 capture->stop_dequeue_thread();
883                 lock.lock();
884                 card->parked_capture = move(card->capture);
885                 CaptureInterface *fake_capture = new FakeCapture(global_flags.width, global_flags.height, FAKE_FPS, OUTPUT_FREQUENCY, card_index, global_flags.fake_cards_audio);
886                 configure_card(card_index, fake_capture, CardType::FAKE_CAPTURE, card->output.release(), /*is_srt_card=*/false);
887                 card->queue_length_policy.reset(card_index);
888                 card->capture->start_bm_capture();
889                 desired_output_video_mode = output_video_mode = card->output->pick_video_mode(desired_output_video_mode);
890                 card->output->start_output(desired_output_video_mode, pts_int);
891         }
892         output_card_index = card_index;
893         output_jitter_history.clear();
894 }
895
896 namespace {
897
898 int unwrap_timecode(uint16_t current_wrapped, int last)
899 {
900         uint16_t last_wrapped = last & 0xffff;
901         if (current_wrapped > last_wrapped) {
902                 return (last & ~0xffff) | current_wrapped;
903         } else {
904                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
905         }
906 }
907
908 }  // namespace
909
910 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
911                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
912                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
913 {
914         DeviceSpec device{InputSourceType::CAPTURE_CARD, card_index};
915         CaptureCard *card = &cards[card_index];
916
917         ++card->metric_input_received_frames;
918         card->metric_input_has_signal_bool = video_format.has_signal;
919         card->metric_input_is_connected_bool = video_format.is_connected;
920         card->metric_input_interlaced_bool = video_format.interlaced;
921         card->metric_input_width_pixels = video_format.width;
922         card->metric_input_height_pixels = video_format.height;
923         card->metric_input_frame_rate_nom = video_format.frame_rate_nom;
924         card->metric_input_frame_rate_den = video_format.frame_rate_den;
925         card->metric_input_sample_rate_hz = audio_format.sample_rate;
926
927         if (is_mode_scanning[card_index]) {
928                 if (video_format.has_signal) {
929                         // Found a stable signal, so stop scanning.
930                         is_mode_scanning[card_index] = false;
931                 } else {
932                         static constexpr double switch_time_s = 0.1;  // Should be enough time for the signal to stabilize.
933                         steady_clock::time_point now = steady_clock::now();
934                         double sec_since_last_switch = duration<double>(steady_clock::now() - last_mode_scan_change[card_index]).count();
935                         if (sec_since_last_switch > switch_time_s) {
936                                 // It isn't this mode; try the next one.
937                                 mode_scanlist_index[card_index]++;
938                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
939                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
940                                 last_mode_scan_change[card_index] = now;
941                         }
942                 }
943         }
944
945         int64_t frame_length = int64_t(TIMEBASE) * video_format.frame_rate_den / video_format.frame_rate_nom;
946         assert(frame_length > 0);
947
948         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
949         if (num_samples > OUTPUT_FREQUENCY / 10 && card->type != CardType::FFMPEG_INPUT) {
950                 printf("%s: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
951                         description_for_card(card_index).c_str(), int(audio_frame.len), int(audio_offset),
952                         timecode, int(video_frame.len), int(video_offset), video_format.id);
953                 if (video_frame.owner) {
954                         video_frame.owner->release_frame(video_frame);
955                 }
956                 if (audio_frame.owner) {
957                         audio_frame.owner->release_frame(audio_frame);
958                 }
959                 return;
960         }
961
962         int dropped_frames = 0;
963         if (card->last_timecode != -1) {
964                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
965         }
966
967         // Number of samples per frame if we need to insert silence.
968         // (Could be nonintegral, but resampling will save us then.)
969         const int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
970
971         if (dropped_frames > MAX_FPS * 2) {
972                 fprintf(stderr, "%s lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
973                         description_for_card(card_index).c_str(), card->last_timecode, timecode);
974                 audio_mixer->reset_resampler(device);
975                 dropped_frames = 0;
976                 ++card->metric_input_resets;
977         } else if (dropped_frames > 0) {
978                 // Insert silence as needed.
979                 fprintf(stderr, "%s dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
980                         description_for_card(card_index).c_str(), dropped_frames, timecode);
981                 card->metric_input_dropped_frames_error += dropped_frames;
982
983                 bool success;
984                 do {
985                         success = audio_mixer->add_silence(device, silence_samples, dropped_frames);
986                 } while (!success);
987         }
988
989         if (num_samples > 0) {
990                 audio_mixer->add_audio(device, audio_frame.data + audio_offset, num_samples, audio_format, audio_frame.received_timestamp);
991
992                 // Audio for the MJPEG stream. We don't resample; audio that's not in 48 kHz
993                 // just gets dropped for now.
994                 //
995                 // Only bother doing MJPEG encoding if there are any connected clients
996                 // that want the stream.
997                 if (httpd.get_num_connected_multicam_clients() > 0 ||
998                     httpd.get_num_connected_siphon_clients(card_index) > 0) {
999                         vector<int32_t> converted_samples = convert_audio_to_fixed32(audio_frame.data + audio_offset, num_samples, audio_format, 2);
1000                         lock_guard<mutex> lock(card_mutex);
1001                         if (card->new_raw_audio.empty()) {
1002                                 card->new_raw_audio = move(converted_samples);
1003                         } else {
1004                                 // For raw audio, we don't really synchronize audio and video;
1005                                 // we just put the audio in frame by frame, and if a video frame is
1006                                 // dropped, we still keep the audio, which means it will be added
1007                                 // to the beginning of the next frame. It would probably be better
1008                                 // to move the audio pts earlier to show this, but most players can
1009                                 // live with some jitter, and in a lot of ways, it's much nicer for
1010                                 // Futatabi to have all audio locked to a video frame.
1011                                 card->new_raw_audio.insert(card->new_raw_audio.end(), converted_samples.begin(), converted_samples.end());
1012
1013                                 // Truncate to one second, just to be sure we don't have infinite buildup in case of weirdness.
1014                                 if (card->new_raw_audio.size() > OUTPUT_FREQUENCY * 2) {
1015                                         size_t excess_samples = card->new_raw_audio.size() - OUTPUT_FREQUENCY * 2;
1016                                         card->new_raw_audio.erase(card->new_raw_audio.begin(), card->new_raw_audio.begin() + excess_samples);
1017                                 }
1018                         }
1019                 }
1020         }
1021
1022         // Done with the audio, so release it.
1023         if (audio_frame.owner) {
1024                 audio_frame.owner->release_frame(audio_frame);
1025         }
1026
1027         card->last_timecode = timecode;
1028
1029         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
1030         if (card->type == CardType::FFMPEG_INPUT && userdata != nullptr) {
1031                 FFmpegCapture *ffmpeg_capture = static_cast<FFmpegCapture *>(card->capture.get());
1032                 userdata->has_last_subtitle = ffmpeg_capture->get_has_last_subtitle();
1033                 userdata->last_subtitle = ffmpeg_capture->get_last_subtitle();
1034         }
1035 #ifdef HAVE_SRT
1036         if (card->type == CardType::FFMPEG_INPUT) {
1037                 int srt_sock = static_cast<FFmpegCapture *>(card->capture.get())->get_srt_sock();
1038                 if (srt_sock != -1) {
1039                         update_srt_stats(srt_sock, card);
1040                 }
1041         }
1042 #endif
1043
1044         size_t y_offset, cbcr_offset;
1045         size_t expected_length = video_format.stride * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom);
1046         if (userdata != nullptr && userdata->pixel_format == PixelFormat_8BitYCbCrPlanar) {
1047                 // The calculation above is wrong for planar Y'CbCr, so just override it.
1048                 assert(card->type == CardType::FFMPEG_INPUT);
1049                 assert(video_offset == 0);
1050                 expected_length = video_frame.len;
1051
1052                 userdata->ycbcr_format = (static_cast<FFmpegCapture *>(card->capture.get()))->get_current_frame_ycbcr_format();
1053                 y_offset = 0;
1054                 cbcr_offset = video_format.width * video_format.height;
1055         } else {
1056                 // All the other Y'CbCr formats are 4:2:2.
1057                 y_offset = video_frame.size / 2 + video_offset / 2;
1058                 cbcr_offset = video_offset / 2;
1059         }
1060         if (video_frame.len - video_offset == 0 ||
1061             video_frame.len - video_offset != expected_length) {
1062                 if (video_frame.len != 0) {
1063                         printf("%s: Dropping video frame with wrong length (%zu; expected %zu)\n",
1064                                 description_for_card(card_index).c_str(), video_frame.len - video_offset, expected_length);
1065                 }
1066                 if (video_frame.owner) {
1067                         video_frame.owner->release_frame(video_frame);
1068                 }
1069
1070                 // Still send on the information that we _had_ a frame, even though it's corrupted,
1071                 // so that pts can go up accordingly.
1072                 {
1073                         lock_guard<mutex> lock(card_mutex);
1074                         CaptureCard::NewFrame new_frame;
1075                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
1076                         new_frame.length = frame_length;
1077                         new_frame.interlaced = false;
1078                         new_frame.dropped_frames = dropped_frames;
1079                         new_frame.received_timestamp = video_frame.received_timestamp;
1080                         card->new_frames.push_back(move(new_frame));
1081                         card->jitter_history.frame_arrived(video_frame.received_timestamp, frame_length, dropped_frames);
1082                 }
1083                 card->new_frames_changed.notify_all();
1084                 return;
1085         }
1086
1087         unsigned num_fields = video_format.interlaced ? 2 : 1;
1088         steady_clock::time_point frame_upload_start;
1089         if (video_format.interlaced) {
1090                 // Send the two fields along as separate frames; the other side will need to add
1091                 // a deinterlacer to actually get this right.
1092                 assert(video_format.height % 2 == 0);
1093                 video_format.height /= 2;
1094                 assert(frame_length % 2 == 0);
1095                 frame_length /= 2;
1096                 num_fields = 2;
1097                 frame_upload_start = steady_clock::now();
1098         }
1099         assert(userdata != nullptr);
1100         userdata->last_interlaced = video_format.interlaced;
1101         userdata->last_has_signal = video_format.has_signal;
1102         userdata->last_is_connected = video_format.is_connected;
1103         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
1104         userdata->last_frame_rate_den = video_format.frame_rate_den;
1105         RefCountedFrame frame(video_frame);
1106
1107         // Send the frames on to the main thread, which will upload and process htem.
1108         // It is entirely possible to upload them in the same thread (and it might even be
1109         // faster, depending on the GPU and driver), but it appears to be trickling
1110         // driver bugs very easily.
1111         //
1112         // Note that this means we must hold on to the actual frame data in <userdata>
1113         // until the upload is done, but we hold on to <frame> much longer than that
1114         // (in fact, all the way until we no longer use the texture in rendering).
1115         for (unsigned field = 0; field < num_fields; ++field) {
1116                 if (field == 1) {
1117                         // Don't upload the second field as fast as we can; wait until
1118                         // the field time has approximately passed. (Otherwise, we could
1119                         // get timing jitter against the other sources, and possibly also
1120                         // against the video display, although the latter is not as critical.)
1121                         // This requires our system clock to be reasonably close to the
1122                         // video clock, but that's not an unreasonable assumption.
1123                         steady_clock::time_point second_field_start = frame_upload_start +
1124                                 nanoseconds(frame_length * 1000000000 / TIMEBASE);
1125                         this_thread::sleep_until(second_field_start);
1126                 }
1127
1128                 {
1129                         lock_guard<mutex> lock(card_mutex);
1130                         CaptureCard::NewFrame new_frame;
1131                         new_frame.frame = frame;
1132                         new_frame.length = frame_length;
1133                         new_frame.field = field;
1134                         new_frame.interlaced = video_format.interlaced;
1135                         new_frame.dropped_frames = dropped_frames;
1136                         new_frame.received_timestamp = video_frame.received_timestamp;  // Ignore the audio timestamp.
1137                         new_frame.video_format = video_format;
1138                         new_frame.video_offset = video_offset;
1139                         new_frame.y_offset = y_offset;
1140                         new_frame.cbcr_offset = cbcr_offset;
1141                         new_frame.texture_uploaded = false;
1142                         if (card->type == CardType::FFMPEG_INPUT) {
1143                                 FFmpegCapture *ffmpeg_capture = static_cast<FFmpegCapture *>(card->capture.get());
1144                                 new_frame.neutral_color = ffmpeg_capture->get_last_neutral_color();
1145                         }
1146                         card->new_frames.push_back(move(new_frame));
1147                         card->jitter_history.frame_arrived(video_frame.received_timestamp, frame_length, dropped_frames);
1148                         card->may_have_dropped_last_frame = false;
1149                 }
1150                 card->new_frames_changed.notify_all();
1151         }
1152 }
1153
1154 void Mixer::upload_texture_for_frame(
1155         int field, bmusb::VideoFormat video_format,
1156         size_t y_offset, size_t cbcr_offset, size_t video_offset, PBOFrameAllocator::Userdata *userdata)
1157 {
1158         size_t cbcr_width, cbcr_height;
1159         if (userdata != nullptr && userdata->pixel_format == PixelFormat_8BitYCbCrPlanar) {
1160                 cbcr_width = video_format.width / userdata->ycbcr_format.chroma_subsampling_x;
1161                 cbcr_height = video_format.height / userdata->ycbcr_format.chroma_subsampling_y;
1162         } else {
1163                 // All the other Y'CbCr formats are 4:2:2.
1164                 cbcr_width = video_format.width / 2;
1165                 cbcr_height = video_format.height;
1166         }
1167
1168         bool interlaced_stride = video_format.interlaced && (video_format.second_field_start == 1);
1169         if (video_format.interlaced) {
1170                 cbcr_height /= 2;
1171         }
1172
1173         unsigned field_start_line;
1174         if (field == 1) {
1175                 field_start_line = video_format.second_field_start;
1176         } else {
1177                 field_start_line = video_format.extra_lines_top;
1178         }
1179
1180         // For anything not FRAME_FORMAT_YCBCR_10BIT, v210_width will be nonsensical but not used.
1181         size_t v210_width = video_format.stride / sizeof(uint32_t);
1182         ensure_texture_resolution(userdata, field, video_format.width, video_format.height, cbcr_width, cbcr_height, v210_width);
1183
1184         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, userdata->pbo);
1185         check_error();
1186
1187         switch (userdata->pixel_format) {
1188                 case PixelFormat_10BitYCbCr: {
1189                         size_t field_start = video_offset + video_format.stride * field_start_line;
1190                         upload_texture(userdata->tex_v210[field], v210_width, video_format.height, video_format.stride, interlaced_stride, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, field_start);
1191                         v210_converter->convert(userdata->tex_v210[field], userdata->tex_444[field], video_format.width, video_format.height);
1192                         break;
1193                 }
1194                 case PixelFormat_8BitYCbCr: {
1195                         size_t field_y_start = y_offset + video_format.width * field_start_line;
1196                         size_t field_cbcr_start = cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t);
1197
1198                         // Make up our own strides, since we are interleaving.
1199                         upload_texture(userdata->tex_y[field], video_format.width, video_format.height, video_format.width, interlaced_stride, GL_RED, GL_UNSIGNED_BYTE, field_y_start);
1200                         upload_texture(userdata->tex_cbcr[field], cbcr_width, cbcr_height, cbcr_width * sizeof(uint16_t), interlaced_stride, GL_RG, GL_UNSIGNED_BYTE, field_cbcr_start);
1201                         break;
1202                 }
1203                 case PixelFormat_8BitYCbCrPlanar: {
1204                         assert(field_start_line == 0);  // We don't really support interlaced here.
1205                         size_t field_y_start = y_offset;
1206                         size_t field_cb_start = cbcr_offset;
1207                         size_t field_cr_start = cbcr_offset + cbcr_width * cbcr_height;
1208
1209                         // Make up our own strides, since we are interleaving.
1210                         upload_texture(userdata->tex_y[field], video_format.width, video_format.height, video_format.width, interlaced_stride, GL_RED, GL_UNSIGNED_BYTE, field_y_start);
1211                         upload_texture(userdata->tex_cb[field], cbcr_width, cbcr_height, cbcr_width, interlaced_stride, GL_RED, GL_UNSIGNED_BYTE, field_cb_start);
1212                         upload_texture(userdata->tex_cr[field], cbcr_width, cbcr_height, cbcr_width, interlaced_stride, GL_RED, GL_UNSIGNED_BYTE, field_cr_start);
1213                         break;
1214                 }
1215                 case PixelFormat_8BitBGRA: {
1216                         size_t field_start = video_offset + video_format.stride * field_start_line;
1217                         upload_texture(userdata->tex_rgba[field], video_format.width, video_format.height, video_format.stride, interlaced_stride, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, field_start);
1218                         // These could be asked to deliver mipmaps at any time.
1219                         glBindTexture(GL_TEXTURE_2D, userdata->tex_rgba[field]);
1220                         check_error();
1221                         glGenerateMipmap(GL_TEXTURE_2D);
1222                         check_error();
1223                         glBindTexture(GL_TEXTURE_2D, 0);
1224                         check_error();
1225                         break;
1226                 }
1227                 default:
1228                         assert(false);
1229         }
1230
1231         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
1232         check_error();
1233 }
1234
1235 void Mixer::bm_hotplug_add(libusb_device *dev)
1236 {
1237         lock_guard<mutex> lock(hotplug_mutex);
1238         hotplugged_cards.push_back(dev);
1239 }
1240
1241 void Mixer::bm_hotplug_remove(unsigned card_index)
1242 {
1243         cards[card_index].new_frames_changed.notify_all();
1244 }
1245
1246 void Mixer::thread_func()
1247 {
1248         pthread_setname_np(pthread_self(), "Mixer_OpenGL");
1249
1250         eglBindAPI(EGL_OPENGL_API);
1251         QOpenGLContext *context = create_context(mixer_surface);
1252         if (!make_current(context, mixer_surface)) {
1253                 printf("oops\n");
1254                 abort();
1255         }
1256
1257         // Start the actual capture. (We don't want to do it before we're actually ready
1258         // to process output frames.)
1259         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1260                 if (int(card_index) != output_card_index && cards[card_index].capture != nullptr) {
1261                         cards[card_index].capture->start_bm_capture();
1262                 }
1263         }
1264
1265         BasicStats basic_stats(/*verbose=*/true, /*use_opengl=*/true);
1266         int stats_dropped_frames = 0;
1267
1268         while (!should_quit) {
1269                 if (desired_output_card_index != output_card_index) {
1270                         set_output_card_internal(desired_output_card_index);
1271                 }
1272                 if (output_card_index != -1 &&
1273                     desired_output_video_mode != output_video_mode) {
1274                         DeckLinkOutput *output = cards[output_card_index].output.get();
1275                         output->end_output();
1276                         desired_output_video_mode = output_video_mode = output->pick_video_mode(desired_output_video_mode);
1277                         output->start_output(desired_output_video_mode, pts_int);
1278                 }
1279
1280                 CaptureCard::NewFrame new_frames[MAX_VIDEO_CARDS];
1281                 bool has_new_frame[MAX_VIDEO_CARDS] = { false };
1282
1283                 bool master_card_is_output;
1284                 unsigned master_card_index;
1285                 if (output_card_index != -1) {
1286                         master_card_is_output = true;
1287                         master_card_index = output_card_index;
1288                 } else {
1289                         master_card_is_output = false;
1290                         master_card_index = theme->map_signal_to_card(master_clock_channel);
1291                         assert(master_card_index < MAX_VIDEO_CARDS);
1292                 }
1293
1294                 {
1295                         lock_guard<mutex> lock(card_mutex);
1296                         handle_hotplugged_cards();
1297                 }
1298
1299                 vector<int32_t> raw_audio[MAX_VIDEO_CARDS];  // For MJPEG encoding.
1300                 OutputFrameInfo output_frame_info = get_one_frame_from_each_card(master_card_index, master_card_is_output, new_frames, has_new_frame, raw_audio);
1301                 schedule_audio_resampling_tasks(output_frame_info.dropped_frames, output_frame_info.num_samples, output_frame_info.frame_duration, output_frame_info.is_preroll, output_frame_info.frame_timestamp);
1302                 stats_dropped_frames += output_frame_info.dropped_frames;
1303
1304                 for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1305                         if (card_index == master_card_index || !has_new_frame[card_index]) {
1306                                 continue;
1307                         }
1308                         if (new_frames[card_index].frame->len == 0) {
1309                                 ++new_frames[card_index].dropped_frames;
1310                         }
1311                         if (new_frames[card_index].dropped_frames > 0) {
1312                                 printf("%s dropped %d frames before this\n",
1313                                         description_for_card(card_index).c_str(), int(new_frames[card_index].dropped_frames));
1314                         }
1315                 }
1316
1317                 // If the first card is reporting a corrupted or otherwise dropped frame,
1318                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
1319                 if (!master_card_is_output &&
1320                     new_frames[master_card_index].frame != nullptr &&  // Timeout.
1321                     new_frames[master_card_index].frame->len == 0) {
1322                         ++stats_dropped_frames;
1323                         pts_int += new_frames[master_card_index].length;
1324                         continue;
1325                 }
1326
1327                 for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1328                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
1329                                 continue;
1330
1331                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
1332                         assert(new_frame->frame != nullptr);
1333                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
1334                         check_error();
1335
1336                         // The new texture might need uploading before use.
1337                         if (!new_frame->texture_uploaded) {
1338                                 upload_texture_for_frame(new_frame->field, new_frame->video_format, new_frame->y_offset, new_frame->cbcr_offset,
1339                                         new_frame->video_offset, (PBOFrameAllocator::Userdata *)new_frame->frame->userdata);
1340                                 new_frame->texture_uploaded = true;
1341                         }
1342
1343                         // Only set the white balance if it actually changed. This means that the user
1344                         // is free to override the white balance in a video with no white balance information
1345                         // actually set (ie. r=g=b=1 all the time), or one where the white point is wrong,
1346                         // but frame-to-frame decisions will be heeded. We do this pretty much as late
1347                         // as possible (ie., after picking out the frame from the buffer), so that we are sure
1348                         // that the change takes effect on exactly the right frame.
1349                         if (fabs(new_frame->neutral_color.r - last_received_neutral_color[card_index].r) > 1e-3 ||
1350                             fabs(new_frame->neutral_color.g - last_received_neutral_color[card_index].g) > 1e-3 ||
1351                             fabs(new_frame->neutral_color.b - last_received_neutral_color[card_index].b) > 1e-3) {
1352                                 theme->set_wb_for_card(card_index, new_frame->neutral_color.r, new_frame->neutral_color.g, new_frame->neutral_color.b);
1353                                 last_received_neutral_color[card_index] = new_frame->neutral_color;
1354                         }
1355
1356                         if (new_frame->frame->data_copy != nullptr && mjpeg_encoder->should_encode_mjpeg_for_card(card_index)) {
1357                                 RGBTriplet neutral_color = theme->get_white_balance_for_card(card_index);
1358                                 mjpeg_encoder->upload_frame(pts_int, card_index, new_frame->frame, new_frame->video_format, new_frame->y_offset, new_frame->cbcr_offset, move(raw_audio[card_index]), neutral_color);
1359                         }
1360
1361                 }
1362
1363                 int64_t frame_duration = output_frame_info.frame_duration;
1364                 render_one_frame(frame_duration);
1365                 {
1366                         lock_guard<mutex> lock(frame_num_mutex);
1367                         ++frame_num;
1368                 }
1369                 frame_num_updated.notify_all();
1370                 pts_int += frame_duration;
1371
1372                 basic_stats.update(frame_num, stats_dropped_frames);
1373                 // if (frame_num % 100 == 0) chain->print_phase_timing();
1374
1375                 if (should_cut.exchange(false)) {  // Test and clear.
1376                         video_encoder->do_cut(frame_num);
1377                 }
1378
1379 #if 0
1380                 // Reset every 100 frames, so that local variations in frame times
1381                 // (especially for the first few frames, when the shaders are
1382                 // compiled etc.) don't make it hard to measure for the entire
1383                 // remaining duration of the program.
1384                 if (frame == 10000) {
1385                         frame = 0;
1386                         start = now;
1387                 }
1388 #endif
1389                 check_error();
1390         }
1391
1392         resource_pool->clean_context();
1393 }
1394
1395 bool Mixer::input_card_is_master_clock(unsigned card_index, unsigned master_card_index) const
1396 {
1397         if (output_card_index != -1) {
1398                 // The output card (ie., cards[output_card_index].output) is the master clock,
1399                 // so no input card (ie., cards[card_index].capture) is.
1400                 return false;
1401         }
1402         return (card_index == master_card_index);
1403 }
1404
1405 void Mixer::trim_queue(CaptureCard *card, size_t safe_queue_length)
1406 {
1407         // Count the number of frames in the queue, including any frames
1408         // we dropped. It's hard to know exactly how we should deal with
1409         // dropped (corrupted) input frames; they don't help our goal of
1410         // avoiding starvation, but they still add to the problem of latency.
1411         // Since dropped frames is going to mean a bump in the signal anyway,
1412         // we err on the side of having more stable latency instead.
1413         unsigned queue_length = 0;
1414         for (const CaptureCard::NewFrame &frame : card->new_frames) {
1415                 queue_length += frame.dropped_frames + 1;
1416         }
1417
1418         // If needed, drop frames until the queue is below the safe limit.
1419         // We prefer to drop from the head, because all else being equal,
1420         // we'd like more recent frames (less latency).
1421         unsigned dropped_frames = 0;
1422         while (queue_length > safe_queue_length) {
1423                 assert(!card->new_frames.empty());
1424                 assert(queue_length > card->new_frames.front().dropped_frames);
1425                 queue_length -= card->new_frames.front().dropped_frames;
1426
1427                 if (queue_length <= safe_queue_length) {
1428                         // No need to drop anything.
1429                         break;
1430                 }
1431
1432                 card->new_frames.pop_front();
1433                 card->new_frames_changed.notify_all();
1434                 --queue_length;
1435                 ++dropped_frames;
1436
1437                 if (queue_length == 0 && card->is_cef_capture) {
1438                         card->may_have_dropped_last_frame = true;
1439                 }
1440         }
1441
1442         card->metric_input_dropped_frames_jitter += dropped_frames;
1443         card->metric_input_queue_length_frames = queue_length;
1444
1445 #if 0
1446         if (dropped_frames > 0) {
1447                 fprintf(stderr, "Card %u dropped %u frame(s) to keep latency down.\n",
1448                         card_index, dropped_frames);
1449         }
1450 #endif
1451 }
1452
1453 pair<string, string> Mixer::get_channels_json()
1454 {
1455         Channels ret;
1456         for (int channel_idx = 0; channel_idx < theme->get_num_channels(); ++channel_idx) {
1457                 Channel *channel = ret.add_channel();
1458                 channel->set_index(channel_idx + 2);
1459                 channel->set_name(theme->get_channel_name(channel_idx + 2));
1460                 channel->set_color(theme->get_channel_color(channel_idx + 2));
1461         }
1462         string contents;
1463         google::protobuf::util::MessageToJsonString(ret, &contents);  // Ignore any errors.
1464         return make_pair(contents, "text/json");
1465 }
1466
1467 pair<string, string> Mixer::get_channel_color_http(unsigned channel_idx)
1468 {
1469         return make_pair(theme->get_channel_color(channel_idx), "text/plain");
1470 }
1471
1472 Mixer::OutputFrameInfo Mixer::get_one_frame_from_each_card(unsigned master_card_index, bool master_card_is_output, CaptureCard::NewFrame new_frames[MAX_VIDEO_CARDS], bool has_new_frame[MAX_VIDEO_CARDS], vector<int32_t> raw_audio[MAX_VIDEO_CARDS])
1473 {
1474         OutputFrameInfo output_frame_info;
1475         constexpr steady_clock::duration master_card_timeout = milliseconds(100);
1476 start:
1477         unique_lock<mutex> lock(card_mutex, defer_lock);
1478         bool timed_out = false;
1479         if (master_card_is_output) {
1480                 // Clocked to the output, so wait for it to be ready for the next frame.
1481                 cards[master_card_index].output->wait_for_frame(pts_int, &output_frame_info.dropped_frames, &output_frame_info.frame_duration, &output_frame_info.is_preroll, &output_frame_info.frame_timestamp);
1482                 lock.lock();
1483         } else {
1484                 // Wait for the master card to have a new frame.
1485                 output_frame_info.is_preroll = false;
1486                 lock.lock();
1487                 timed_out = !cards[master_card_index].new_frames_changed.wait_for(lock,
1488                         master_card_timeout,
1489                         [this, master_card_index]{
1490                                 return !cards[master_card_index].new_frames.empty() ||
1491                                         cards[master_card_index].capture->get_disconnected();
1492                         });
1493         }
1494
1495         if (timed_out) {
1496                 // The master card stalled for 100 ms (possible when it's e.g.
1497                 // an SRT card). Send a frame no matter what; this also makes sure
1498                 // any other cards get to empty their queues, and in general,
1499                 // that we make _some_ sort of forward progress.
1500                 handle_hotplugged_cards();
1501         } else if (master_card_is_output) {
1502                 handle_hotplugged_cards();
1503         } else if (cards[master_card_index].new_frames.empty()) {
1504                 // We were woken up, but not due to a new frame. Deal with it
1505                 // and then restart.
1506                 assert(cards[master_card_index].capture->get_disconnected());
1507                 handle_hotplugged_cards();
1508                 lock.unlock();
1509                 goto start;
1510         }
1511
1512         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1513                 CaptureCard *card = &cards[card_index];
1514                 if (card->new_frames.empty()) {  // Starvation.
1515                         ++card->metric_input_duped_frames;
1516 #ifdef HAVE_CEF
1517                         if (card->is_cef_capture && card->may_have_dropped_last_frame) {
1518                                 // Unlike other sources, CEF is not guaranteed to send us a steady
1519                                 // stream of frames, so we'll have to ask it to repaint the frame
1520                                 // we dropped. (may_have_dropped_last_frame is set whenever we
1521                                 // trim the queue completely away, and cleared when we actually
1522                                 // get a new frame.)
1523                                 ((CEFCapture *)card->capture.get())->request_new_frame(/*ignore_if_locked=*/true);
1524                         }
1525 #endif
1526                 } else {
1527                         new_frames[card_index] = move(card->new_frames.front());
1528                         has_new_frame[card_index] = true;
1529                         card->new_frames.pop_front();
1530                         card->new_frames_changed.notify_all();
1531                 }
1532
1533                 raw_audio[card_index] = move(card->new_raw_audio);
1534         }
1535
1536         if (timed_out) {
1537                 // Pretend the frame happened a while ago and was only processed now,
1538                 // so that we get the duration sort-of right. This isn't ideal.
1539                 output_frame_info.dropped_frames = 0;  // Hard to define, really.
1540                 output_frame_info.frame_duration = lrint(TIMEBASE * duration<double>(master_card_timeout).count());
1541                 output_frame_info.frame_timestamp = steady_clock::now() - master_card_timeout;
1542         } else if (!master_card_is_output) {
1543                 output_frame_info.frame_timestamp = new_frames[master_card_index].received_timestamp;
1544                 output_frame_info.dropped_frames = new_frames[master_card_index].dropped_frames;
1545                 output_frame_info.frame_duration = new_frames[master_card_index].length;
1546         }
1547
1548         if (!output_frame_info.is_preroll) {
1549                 output_jitter_history.frame_arrived(output_frame_info.frame_timestamp, output_frame_info.frame_duration, output_frame_info.dropped_frames);
1550         }
1551
1552         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1553                 CaptureCard *card = &cards[card_index];
1554                 if (has_new_frame[card_index] &&
1555                     !input_card_is_master_clock(card_index, master_card_index) &&
1556                     !output_frame_info.is_preroll) {
1557                         card->queue_length_policy.update_policy(
1558                                 output_frame_info.frame_timestamp,
1559                                 card->jitter_history.get_expected_next_frame(),
1560                                 new_frames[master_card_index].length,
1561                                 output_frame_info.frame_duration,
1562                                 card->jitter_history.estimate_max_jitter(),
1563                                 output_jitter_history.estimate_max_jitter());
1564                         trim_queue(card, min<int>(global_flags.max_input_queue_frames,
1565                                                   card->queue_length_policy.get_safe_queue_length()));
1566                 }
1567         }
1568
1569         // This might get off by a fractional sample when changing master card
1570         // between ones with different frame rates, but that's fine.
1571         int64_t num_samples_times_timebase = int64_t(OUTPUT_FREQUENCY) * output_frame_info.frame_duration + fractional_samples;
1572         output_frame_info.num_samples = num_samples_times_timebase / TIMEBASE;
1573         fractional_samples = num_samples_times_timebase % TIMEBASE;
1574         assert(output_frame_info.num_samples >= 0);
1575
1576         return output_frame_info;
1577 }
1578
1579 void Mixer::handle_hotplugged_cards()
1580 {
1581         // Check for cards that have been disconnected since last frame.
1582         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1583                 CaptureCard *card = &cards[card_index];
1584                 if (card->capture != nullptr && card->capture->get_disconnected()) {
1585                         fprintf(stderr, "Card %u went away, replacing with a fake card.\n", card_index);
1586                         FakeCapture *capture = new FakeCapture(global_flags.width, global_flags.height, FAKE_FPS, OUTPUT_FREQUENCY, card_index, global_flags.fake_cards_audio);
1587                         configure_card(card_index, capture, CardType::FAKE_CAPTURE, /*output=*/nullptr, /*is_srt_card=*/false);
1588                         card->queue_length_policy.reset(card_index);
1589                         card->capture->start_bm_capture();
1590                 }
1591         }
1592
1593         // Count how many active cards we already have. Used below to check that we
1594         // don't go past the max_cards limit set by the user. Note that (non-SRT) video
1595         // and HTML “cards” don't count towards this limit.
1596         int num_video_cards = 0;
1597         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1598                 CaptureCard *card = &cards[card_index];
1599                 if (card->type == CardType::LIVE_CARD || is_srt_card(card)) {
1600                         ++num_video_cards;
1601                 }
1602         }
1603
1604         // Check for cards that have been connected since last frame.
1605         vector<libusb_device *> hotplugged_cards_copy;
1606 #ifdef HAVE_SRT
1607         vector<int> hotplugged_srt_cards_copy;
1608 #endif
1609         {
1610                 lock_guard<mutex> lock(hotplug_mutex);
1611                 swap(hotplugged_cards, hotplugged_cards_copy);
1612 #ifdef HAVE_SRT
1613                 swap(hotplugged_srt_cards, hotplugged_srt_cards_copy);
1614 #endif
1615         }
1616         for (libusb_device *new_dev : hotplugged_cards_copy) {
1617                 // Look for a fake capture card where we can stick this in.
1618                 int free_card_index = -1;
1619                 for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1620                         if (cards[card_index].is_fake_capture) {
1621                                 free_card_index = card_index;
1622                                 break;
1623                         }
1624                 }
1625
1626                 if (free_card_index == -1 || num_video_cards >= global_flags.max_num_cards) {
1627                         fprintf(stderr, "New card plugged in, but no free slots -- ignoring.\n");
1628                         libusb_unref_device(new_dev);
1629                 } else {
1630                         // BMUSBCapture takes ownership.
1631                         fprintf(stderr, "New card plugged in, choosing slot %d.\n", free_card_index);
1632                         CaptureCard *card = &cards[free_card_index];
1633                         BMUSBCapture *capture = new BMUSBCapture(free_card_index, new_dev);
1634                         configure_card(free_card_index, capture, CardType::LIVE_CARD, /*output=*/nullptr, /*is_srt_card=*/false);
1635                         card->queue_length_policy.reset(free_card_index);
1636                         capture->set_card_disconnected_callback(bind(&Mixer::bm_hotplug_remove, this, free_card_index));
1637                         capture->start_bm_capture();
1638                 }
1639         }
1640
1641 #ifdef HAVE_SRT
1642         // Same, for SRT inputs.
1643         for (SRTSOCKET sock : hotplugged_srt_cards_copy) {
1644                 char name[256];
1645                 int namelen = sizeof(name);
1646                 srt_getsockopt(sock, /*ignored=*/0, SRTO_STREAMID, name, &namelen);
1647                 string stream_id(name, namelen);
1648
1649                 // Look for a fake capture card where we can stick this in.
1650                 // Prioritize ones that previously held SRT streams with the
1651                 // same stream ID, if any exist -- and it multiple exist,
1652                 // take the one that disconnected the last.
1653                 int first_free_card_index = -1, last_matching_free_card_index = -1;
1654                 for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1655                         CaptureCard *card = &cards[card_index];
1656                         if (!card->is_fake_capture) {
1657                                 continue;
1658                         }
1659                         if (first_free_card_index == -1) {
1660                                 first_free_card_index = card_index;
1661                         }
1662                         if (card->last_srt_stream_id == stream_id &&
1663                             (last_matching_free_card_index == -1 ||
1664                              card->fake_capture_counter >
1665                                 cards[last_matching_free_card_index].fake_capture_counter)) {
1666                                 last_matching_free_card_index = card_index;
1667                         }
1668                 }
1669
1670                 const int free_card_index = (last_matching_free_card_index != -1)
1671                         ? last_matching_free_card_index : first_free_card_index;
1672                 if (free_card_index == -1 || num_video_cards >= global_flags.max_num_cards) {
1673                         if (stream_id.empty()) {
1674                                 stream_id = "no name";
1675                         }
1676                         fprintf(stderr, "New SRT stream connected (%s), but no free slots -- ignoring.\n", stream_id.c_str());
1677                         srt_close(sock);
1678                 } else {
1679                         // FFmpegCapture takes ownership.
1680                         if (stream_id.empty()) {
1681                                 fprintf(stderr, "New unnamed SRT stream connected, choosing slot %d.\n", free_card_index);
1682                         } else {
1683                                 fprintf(stderr, "New SRT stream connected (%s), choosing slot %d.\n", stream_id.c_str(), free_card_index);
1684                         }
1685                         CaptureCard *card = &cards[free_card_index];
1686                         FFmpegCapture *capture = new FFmpegCapture(sock, stream_id);
1687                         capture->set_card_index(free_card_index);
1688                         configure_card(free_card_index, capture, CardType::FFMPEG_INPUT, /*output=*/nullptr, /*is_srt_card=*/true);
1689                         update_srt_stats(sock, card);  // Initial zero stats.
1690                         card->last_srt_stream_id = stream_id;
1691                         card->queue_length_policy.reset(free_card_index);
1692                         capture->set_card_disconnected_callback(bind(&Mixer::bm_hotplug_remove, this, free_card_index));
1693                         capture->start_bm_capture();
1694                 }
1695         }
1696 #endif
1697
1698         // Finally, newly forced-to-active fake capture cards.
1699         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1700                 CaptureCard *card = &cards[card_index];
1701                 if (card->capture == nullptr && card->force_active) {
1702                         FakeCapture *capture = new FakeCapture(global_flags.width, global_flags.height, FAKE_FPS, OUTPUT_FREQUENCY, card_index, global_flags.fake_cards_audio);
1703                         configure_card(card_index, capture, CardType::FAKE_CAPTURE, /*output=*/nullptr, /*is_srt_card=*/false);
1704                         card->queue_length_policy.reset(card_index);
1705                         card->capture->start_bm_capture();
1706                 }
1707         }
1708 }
1709
1710
1711 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame, bool is_preroll, steady_clock::time_point frame_timestamp)
1712 {
1713         // Resample the audio as needed, including from previously dropped frames.
1714         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
1715                 const bool dropped_frame = (frame_num != dropped_frames);
1716                 {
1717                         // Signal to the audio thread to process this frame.
1718                         // Note that if the frame is a dropped frame, we signal that
1719                         // we don't want to use this frame as base for adjusting
1720                         // the resampler rate. The reason for this is that the timing
1721                         // of these frames is often way too late; they typically don't
1722                         // “arrive” before we synthesize them. Thus, we could end up
1723                         // in a situation where we have inserted e.g. five audio frames
1724                         // into the queue before we then start pulling five of them
1725                         // back out. This makes ResamplingQueue overestimate the delay,
1726                         // causing undue resampler changes. (We _do_ use the last,
1727                         // non-dropped frame; perhaps we should just discard that as well,
1728                         // since dropped frames are expected to be rare, and it might be
1729                         // better to just wait until we have a slightly more normal situation).
1730                         lock_guard<mutex> lock(audio_mutex);
1731                         bool adjust_rate = !dropped_frame && !is_preroll;
1732                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame, adjust_rate, frame_timestamp});
1733                         audio_task_queue_changed.notify_one();
1734                 }
1735                 if (dropped_frame) {
1736                         // For dropped frames, increase the pts. Note that if the format changed
1737                         // in the meantime, we have no way of detecting that; we just have to
1738                         // assume the frame length is always the same.
1739                         pts_int += length_per_frame;
1740                 }
1741         }
1742 }
1743
1744 void Mixer::render_one_frame(int64_t duration)
1745 {
1746         // Determine the time code for this frame before we start rendering.
1747         string timecode_text = timecode_renderer->get_timecode_text(double(pts_int) / TIMEBASE, frame_num);
1748         if (display_timecode_on_stdout) {
1749                 printf("Timecode: '%s'\n", timecode_text.c_str());
1750         }
1751
1752         // Update Y'CbCr settings for all cards.
1753         {
1754                 lock_guard<mutex> lock(card_mutex);
1755                 for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1756                         YCbCrInterpretation *interpretation = &ycbcr_interpretation[card_index];
1757                         input_state.ycbcr_coefficients_auto[card_index] = interpretation->ycbcr_coefficients_auto;
1758                         input_state.ycbcr_coefficients[card_index] = interpretation->ycbcr_coefficients;
1759                         input_state.full_range[card_index] = interpretation->full_range;
1760                 }
1761         }
1762
1763         // Get the main chain from the theme, and set its state immediately.
1764         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), global_flags.width, global_flags.height, input_state);
1765         EffectChain *chain = theme_main_chain.chain;
1766         theme_main_chain.setup_chain();
1767         //theme_main_chain.chain->enable_phase_timing(true);
1768
1769         // If HDMI/SDI output is active and the user has requested auto mode,
1770         // its mode overrides the existing Y'CbCr setting for the chain.
1771         YCbCrLumaCoefficients ycbcr_output_coefficients;
1772         if (global_flags.ycbcr_auto_coefficients && output_card_index != -1) {
1773                 ycbcr_output_coefficients = cards[output_card_index].output->preferred_ycbcr_coefficients();
1774         } else {
1775                 ycbcr_output_coefficients = global_flags.ycbcr_rec709_coefficients ? YCBCR_REC_709 : YCBCR_REC_601;
1776         }
1777
1778         // TODO: Reduce the duplication against theme.cpp.
1779         YCbCrFormat output_ycbcr_format;
1780         output_ycbcr_format.chroma_subsampling_x = 1;
1781         output_ycbcr_format.chroma_subsampling_y = 1;
1782         output_ycbcr_format.luma_coefficients = ycbcr_output_coefficients;
1783         output_ycbcr_format.full_range = false;
1784         output_ycbcr_format.num_levels = 1 << global_flags.x264_bit_depth;
1785         chain->change_ycbcr_output_format(output_ycbcr_format);
1786
1787         // Render main chain. If we're using zerocopy Quick Sync encoding
1788         // (the default case), we take an extra copy of the created outputs,
1789         // so that we can display it back to the screen later (it's less memory
1790         // bandwidth than writing and reading back an RGBA texture, even at 16-bit).
1791         // Ideally, we'd like to avoid taking copies and just use the main textures
1792         // for display as well, but they're just views into VA-API memory and must be
1793         // unmapped during encoding, so we can't use them for display, unfortunately.
1794         GLuint y_tex, cbcr_full_tex, cbcr_tex;
1795         GLuint y_copy_tex, cbcr_copy_tex = 0;
1796         GLuint y_display_tex, cbcr_display_tex;
1797         GLenum y_type = (global_flags.x264_bit_depth > 8) ? GL_R16 : GL_R8;
1798         GLenum cbcr_type = (global_flags.x264_bit_depth > 8) ? GL_RG16 : GL_RG8;
1799         const bool is_zerocopy = video_encoder->is_zerocopy();
1800         if (is_zerocopy) {
1801                 cbcr_full_tex = resource_pool->create_2d_texture(cbcr_type, global_flags.width, global_flags.height);
1802                 y_copy_tex = resource_pool->create_2d_texture(y_type, global_flags.width, global_flags.height);
1803                 cbcr_copy_tex = resource_pool->create_2d_texture(cbcr_type, global_flags.width / 2, global_flags.height / 2);
1804
1805                 y_display_tex = y_copy_tex;
1806                 cbcr_display_tex = cbcr_copy_tex;
1807
1808                 // y_tex and cbcr_tex will be given by VideoEncoder.
1809         } else {
1810                 cbcr_full_tex = resource_pool->create_2d_texture(cbcr_type, global_flags.width, global_flags.height);
1811                 y_tex = resource_pool->create_2d_texture(y_type, global_flags.width, global_flags.height);
1812                 cbcr_tex = resource_pool->create_2d_texture(cbcr_type, global_flags.width / 2, global_flags.height / 2);
1813
1814                 y_display_tex = y_tex;
1815                 cbcr_display_tex = cbcr_tex;
1816         }
1817
1818         const int64_t av_delay = lrint(global_flags.audio_queue_length_ms * 0.001 * TIMEBASE);  // Corresponds to the delay in ResamplingQueue.
1819         bool got_frame = video_encoder->begin_frame(pts_int + av_delay, duration, ycbcr_output_coefficients, theme_main_chain.input_frames, &y_tex, &cbcr_tex);
1820         assert(got_frame);
1821
1822         GLuint fbo;
1823         if (is_zerocopy) {
1824                 fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, y_copy_tex);
1825         } else {
1826                 fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex);
1827         }
1828         check_error();
1829         chain->render_to_fbo(fbo, global_flags.width, global_flags.height);
1830
1831         if (display_timecode_in_stream) {
1832                 // Render the timecode on top.
1833                 timecode_renderer->render_timecode(fbo, timecode_text);
1834         }
1835
1836         resource_pool->release_fbo(fbo);
1837
1838         if (is_zerocopy) {
1839                 chroma_subsampler->subsample_chroma(cbcr_full_tex, global_flags.width, global_flags.height, cbcr_tex, cbcr_copy_tex);
1840         } else {
1841                 chroma_subsampler->subsample_chroma(cbcr_full_tex, global_flags.width, global_flags.height, cbcr_tex);
1842         }
1843         if (output_card_index != -1) {
1844                 cards[output_card_index].output->send_frame(y_tex, cbcr_full_tex, ycbcr_output_coefficients, theme_main_chain.input_frames, pts_int, duration);
1845         }
1846         resource_pool->release_2d_texture(cbcr_full_tex);
1847
1848         // Set the right state for the Y' and CbCr textures we use for display.
1849         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1850         glBindTexture(GL_TEXTURE_2D, y_display_tex);
1851         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1852         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1853         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1854
1855         glBindTexture(GL_TEXTURE_2D, cbcr_display_tex);
1856         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1857         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1858         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1859
1860         RefCountedGLsync fence = video_encoder->end_frame();
1861
1862         // The live frame pieces the Y'CbCr texture copies back into RGB and displays them.
1863         // It owns y_display_tex and cbcr_display_tex now (whichever textures they are).
1864         DisplayFrame live_frame;
1865         live_frame.chain = display_chain.get();
1866         live_frame.setup_chain = [this, y_display_tex, cbcr_display_tex]{
1867                 display_input->set_texture_num(0, y_display_tex);
1868                 display_input->set_texture_num(1, cbcr_display_tex);
1869         };
1870         live_frame.ready_fence = fence;
1871         live_frame.input_frames = {};
1872         live_frame.temp_textures = { y_display_tex, cbcr_display_tex };
1873         output_channel[OUTPUT_LIVE].output_frame(move(live_frame));
1874
1875         // Set up preview and any additional channels.
1876         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
1877                 DisplayFrame display_frame;
1878                 Theme::Chain chain = theme->get_chain(i, pts(), global_flags.width, global_flags.height, input_state);  // FIXME: dimensions
1879                 display_frame.chain = move(chain.chain);
1880                 display_frame.setup_chain = move(chain.setup_chain);
1881                 display_frame.ready_fence = fence;
1882                 display_frame.input_frames = move(chain.input_frames);
1883                 display_frame.temp_textures = {};
1884                 output_channel[i].output_frame(move(display_frame));
1885         }
1886 }
1887
1888 void Mixer::audio_thread_func()
1889 {
1890         pthread_setname_np(pthread_self(), "Mixer_Audio");
1891
1892         while (!should_quit) {
1893                 AudioTask task;
1894
1895                 {
1896                         unique_lock<mutex> lock(audio_mutex);
1897                         audio_task_queue_changed.wait(lock, [this]{ return should_quit || !audio_task_queue.empty(); });
1898                         if (should_quit) {
1899                                 return;
1900                         }
1901                         task = audio_task_queue.front();
1902                         audio_task_queue.pop();
1903                 }
1904
1905                 ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy =
1906                         task.adjust_rate ? ResamplingQueue::ADJUST_RATE : ResamplingQueue::DO_NOT_ADJUST_RATE;
1907                 vector<float> samples_out = audio_mixer->get_output(
1908                         task.frame_timestamp,
1909                         task.num_samples,
1910                         rate_adjustment_policy);
1911
1912                 // Send the samples to the sound card, then add them to the output.
1913                 if (alsa) {
1914                         alsa->write(samples_out);
1915                 }
1916                 if (output_card_index != -1) {
1917                         const int64_t av_delay = lrint(global_flags.audio_queue_length_ms * 0.001 * TIMEBASE);  // Corresponds to the delay in ResamplingQueue.
1918                         cards[output_card_index].output->send_audio(task.pts_int + av_delay, samples_out);
1919                 }
1920                 video_encoder->add_audio(task.pts_int, move(samples_out));
1921         }
1922 }
1923
1924 void Mixer::release_display_frame(DisplayFrame *frame)
1925 {
1926         for (GLuint texnum : frame->temp_textures) {
1927                 resource_pool->release_2d_texture(texnum);
1928         }
1929         frame->temp_textures.clear();
1930         frame->ready_fence.reset();
1931         frame->input_frames.clear();
1932 }
1933
1934 void Mixer::start()
1935 {
1936         mixer_thread = thread(&Mixer::thread_func, this);
1937         audio_thread = thread(&Mixer::audio_thread_func, this);
1938 }
1939
1940 void Mixer::quit()
1941 {
1942         should_quit = true;
1943         audio_task_queue_changed.notify_one();
1944         mixer_thread.join();
1945         audio_thread.join();
1946 #ifdef HAVE_SRT
1947         if (global_flags.srt_port >= 0) {
1948                 // There's seemingly no other reasonable way to wake up the thread
1949                 // (libsrt's epoll equivalent is busy-waiting).
1950                 int sock = srt_socket(AF_INET6, 0, 0);
1951                 if (sock != -1) {
1952                         sockaddr_in6 addr;
1953                         memset(&addr, 0, sizeof(addr));
1954                         addr.sin6_family = AF_INET6;
1955                         addr.sin6_addr = IN6ADDR_LOOPBACK_INIT;
1956                         addr.sin6_port = htons(global_flags.srt_port);
1957                         srt_connect(sock, (sockaddr *)&addr, sizeof(addr));
1958                         srt_close(sock);
1959                 }
1960                 srt_thread.join();
1961         }
1962 #endif
1963 }
1964
1965 void Mixer::transition_clicked(int transition_num)
1966 {
1967         theme->transition_clicked(transition_num, pts());
1968 }
1969
1970 void Mixer::channel_clicked(int preview_num)
1971 {
1972         theme->channel_clicked(preview_num);
1973 }
1974
1975 YCbCrInterpretation Mixer::get_input_ycbcr_interpretation(unsigned card_index) const
1976 {
1977         lock_guard<mutex> lock(card_mutex);
1978         return ycbcr_interpretation[card_index];
1979 }
1980
1981 void Mixer::set_input_ycbcr_interpretation(unsigned card_index, const YCbCrInterpretation &interpretation)
1982 {
1983         lock_guard<mutex> lock(card_mutex);
1984         ycbcr_interpretation[card_index] = interpretation;
1985 }
1986
1987 void Mixer::start_mode_scanning(unsigned card_index)
1988 {
1989         assert(card_index < MAX_VIDEO_CARDS);
1990         if (cards[card_index].capture != nullptr) {
1991                 // Inactive card. Should never happen.
1992                 return;
1993         }
1994         if (is_mode_scanning[card_index]) {
1995                 return;
1996         }
1997         is_mode_scanning[card_index] = true;
1998         mode_scanlist[card_index].clear();
1999         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
2000                 mode_scanlist[card_index].push_back(mode.first);
2001         }
2002         assert(!mode_scanlist[card_index].empty());
2003         mode_scanlist_index[card_index] = 0;
2004         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
2005         last_mode_scan_change[card_index] = steady_clock::now();
2006 }
2007
2008 map<uint32_t, VideoMode> Mixer::get_available_output_video_modes() const
2009 {
2010         assert(desired_output_card_index != -1);
2011         lock_guard<mutex> lock(card_mutex);
2012         return cards[desired_output_card_index].output->get_available_video_modes();
2013 }
2014
2015 string Mixer::get_ffmpeg_filename(unsigned card_index) const
2016 {
2017         assert(card_index < MAX_VIDEO_CARDS);
2018         assert(cards[card_index].type == CardType::FFMPEG_INPUT);
2019         return ((FFmpegCapture *)(cards[card_index].capture.get()))->get_filename();
2020 }
2021
2022 void Mixer::set_ffmpeg_filename(unsigned card_index, const string &filename) {
2023         assert(card_index < MAX_VIDEO_CARDS);
2024         assert(cards[card_index].type == CardType::FFMPEG_INPUT);
2025         ((FFmpegCapture *)(cards[card_index].capture.get()))->change_filename(filename);
2026 }
2027
2028 void Mixer::wait_for_next_frame()
2029 {
2030         unique_lock<mutex> lock(frame_num_mutex);
2031         unsigned old_frame_num = frame_num;
2032         frame_num_updated.wait_for(lock, seconds(1),  // Timeout is just in case.
2033                 [old_frame_num, this]{ return this->frame_num > old_frame_num; });
2034 }
2035
2036 Mixer::OutputChannel::~OutputChannel()
2037 {
2038         if (has_current_frame) {
2039                 parent->release_display_frame(&current_frame);
2040         }
2041         if (has_ready_frame) {
2042                 parent->release_display_frame(&ready_frame);
2043         }
2044 }
2045
2046 void Mixer::OutputChannel::output_frame(DisplayFrame &&frame)
2047 {
2048         // Store this frame for display. Remove the ready frame if any
2049         // (it was seemingly never used).
2050         {
2051                 lock_guard<mutex> lock(frame_mutex);
2052                 if (has_ready_frame) {
2053                         parent->release_display_frame(&ready_frame);
2054                 }
2055                 ready_frame = move(frame);
2056                 has_ready_frame = true;
2057
2058                 // Call the callbacks under the mutex (they should be short),
2059                 // so that we don't race against a callback removal.
2060                 for (const auto &key_and_callback : new_frame_ready_callbacks) {
2061                         key_and_callback.second();
2062                 }
2063         }
2064
2065         // Reduce the number of callbacks by filtering duplicates. The reason
2066         // why we bother doing this is that Qt seemingly can get into a state
2067         // where its builds up an essentially unbounded queue of signals,
2068         // consuming more and more memory, and there's no good way of collapsing
2069         // user-defined signals or limiting the length of the queue.
2070         if (transition_names_updated_callback) {
2071                 vector<string> transition_names = global_mixer->get_transition_names();
2072                 bool changed = false;
2073                 if (transition_names.size() != last_transition_names.size()) {
2074                         changed = true;
2075                 } else {
2076                         for (unsigned i = 0; i < transition_names.size(); ++i) {
2077                                 if (transition_names[i] != last_transition_names[i]) {
2078                                         changed = true;
2079                                         break;
2080                                 }
2081                         }
2082                 }
2083                 if (changed) {
2084                         transition_names_updated_callback(transition_names);
2085                         last_transition_names = transition_names;
2086                 }
2087         }
2088         if (name_updated_callback) {
2089                 string name = global_mixer->get_channel_name(channel);
2090                 if (name != last_name) {
2091                         name_updated_callback(name);
2092                         last_name = name;
2093                 }
2094         }
2095         if (color_updated_callback) {
2096                 string color = global_mixer->get_channel_color(channel);
2097                 if (color != last_color) {
2098                         color_updated_callback(color);
2099                         last_color = color;
2100                 }
2101         }
2102 }
2103
2104 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
2105 {
2106         lock_guard<mutex> lock(frame_mutex);
2107         if (!has_current_frame && !has_ready_frame) {
2108                 return false;
2109         }
2110
2111         if (has_current_frame && has_ready_frame) {
2112                 // We have a new ready frame. Toss the current one.
2113                 parent->release_display_frame(&current_frame);
2114                 has_current_frame = false;
2115         }
2116         if (has_ready_frame) {
2117                 assert(!has_current_frame);
2118                 current_frame = move(ready_frame);
2119                 ready_frame.ready_fence.reset();  // Drop the refcount.
2120                 ready_frame.input_frames.clear();  // Drop the refcounts.
2121                 has_current_frame = true;
2122                 has_ready_frame = false;
2123         }
2124
2125         *frame = current_frame;
2126         return true;
2127 }
2128
2129 void Mixer::OutputChannel::add_frame_ready_callback(void *key, Mixer::new_frame_ready_callback_t callback)
2130 {
2131         lock_guard<mutex> lock(frame_mutex);
2132         new_frame_ready_callbacks[key] = callback;
2133 }
2134
2135 void Mixer::OutputChannel::remove_frame_ready_callback(void *key)
2136 {
2137         lock_guard<mutex> lock(frame_mutex);
2138         new_frame_ready_callbacks.erase(key);
2139 }
2140
2141 void Mixer::OutputChannel::set_transition_names_updated_callback(Mixer::transition_names_updated_callback_t callback)
2142 {
2143         transition_names_updated_callback = callback;
2144 }
2145
2146 void Mixer::OutputChannel::set_name_updated_callback(Mixer::name_updated_callback_t callback)
2147 {
2148         name_updated_callback = callback;
2149 }
2150
2151 void Mixer::OutputChannel::set_color_updated_callback(Mixer::color_updated_callback_t callback)
2152 {
2153         color_updated_callback = callback;
2154 }
2155
2156 #ifdef HAVE_SRT
2157 void Mixer::start_srt()
2158 {
2159         SRTSOCKET sock = srt_socket(AF_INET6, 0, 0);
2160         sockaddr_in6 addr;
2161         memset(&addr, 0, sizeof(addr));
2162         addr.sin6_family = AF_INET6;
2163         addr.sin6_port = htons(global_flags.srt_port);
2164
2165         int err = srt_bind(sock, (sockaddr *)&addr, sizeof(addr));
2166         if (err != 0) {
2167                 fprintf(stderr, "srt_bind: %s\n", srt_getlasterror_str());
2168                 abort();
2169         }
2170         err = srt_listen(sock, MAX_VIDEO_CARDS);
2171         if (err != 0) {
2172                 fprintf(stderr, "srt_listen: %s\n", srt_getlasterror_str());
2173                 abort();
2174         }
2175
2176         srt_thread = thread([this, sock] {
2177                 sockaddr_in6 addr;
2178                 for ( ;; ) {
2179                         int sa_len = sizeof(addr);
2180                         int clientsock = srt_accept(sock, (sockaddr *)&addr, &sa_len);
2181                         if (should_quit) {
2182                                 if (clientsock != -1) {
2183                                         srt_close(clientsock);
2184                                 }
2185                                 break;
2186                         }
2187                         if (!global_flags.enable_srt) {  // Runtime UI toggle.
2188                                 // Perhaps not as good as never listening in the first place,
2189                                 // but much simpler to turn on and off.
2190                                 srt_close(clientsock);
2191                                 continue;
2192                         }
2193                         lock_guard<mutex> lock(hotplug_mutex);
2194                         hotplugged_srt_cards.push_back(clientsock);
2195                 }
2196                 srt_close(sock);
2197         });
2198 }
2199 #endif
2200
2201 #ifdef HAVE_SRT
2202 void Mixer::update_srt_stats(int srt_sock, Mixer::CaptureCard *card)
2203 {
2204         SRT_TRACEBSTATS stats;
2205         srt_bistats(srt_sock, &stats, /*clear=*/0, /*instantaneous=*/1);
2206
2207         card->metric_srt_uptime_seconds = stats.msTimeStamp * 1e-3;
2208         card->metric_srt_send_duration_seconds = stats.usSndDurationTotal * 1e-6;
2209         card->metric_srt_sent_bytes = stats.byteSentTotal;
2210         card->metric_srt_received_bytes = stats.byteRecvTotal;
2211         card->metric_srt_sent_packets_normal = stats.pktSentTotal;
2212         card->metric_srt_received_packets_normal = stats.pktRecvTotal;
2213         card->metric_srt_sent_packets_lost = stats.pktSndLossTotal;
2214         card->metric_srt_received_packets_lost = stats.pktRcvLossTotal;
2215         card->metric_srt_sent_packets_retransmitted = stats.pktRetransTotal;
2216         card->metric_srt_sent_bytes_retransmitted = stats.byteRetransTotal;
2217         card->metric_srt_sent_packets_ack = stats.pktSentACKTotal;
2218         card->metric_srt_received_packets_ack = stats.pktRecvACKTotal;
2219         card->metric_srt_sent_packets_nak = stats.pktSentNAKTotal;
2220         card->metric_srt_received_packets_nak = stats.pktRecvNAKTotal;
2221         card->metric_srt_sent_packets_dropped = stats.pktSndDropTotal;
2222         card->metric_srt_received_packets_dropped = stats.pktRcvDropTotal;
2223         card->metric_srt_sent_bytes_dropped = stats.byteSndDropTotal;
2224         card->metric_srt_received_bytes_dropped = stats.byteRcvDropTotal;
2225         card->metric_srt_received_packets_undecryptable = stats.pktRcvUndecryptTotal;
2226         card->metric_srt_received_bytes_undecryptable = stats.byteRcvUndecryptTotal;
2227         card->metric_srt_filter_sent_packets = stats.pktSndFilterExtraTotal;
2228         card->metric_srt_filter_received_extra_packets = stats.pktRcvFilterExtraTotal;
2229         card->metric_srt_filter_received_rebuilt_packets = stats.pktRcvFilterSupplyTotal;
2230         card->metric_srt_filter_received_lost_packets = stats.pktRcvFilterLossTotal;
2231
2232         // Gauges.
2233         card->metric_srt_packet_sending_period_seconds = stats.usPktSndPeriod * 1e-6;
2234         card->metric_srt_flow_window_packets = stats.pktFlowWindow;
2235         card->metric_srt_congestion_window_packets = stats.pktCongestionWindow;
2236         card->metric_srt_flight_size_packets = stats.pktFlightSize;
2237         card->metric_srt_rtt_seconds = stats.msRTT * 1e-3;
2238         card->metric_srt_estimated_bandwidth_bits_per_second = stats.mbpsBandwidth * 1e6;
2239         card->metric_srt_bandwidth_ceiling_bits_per_second = stats.mbpsMaxBW * 1e6;
2240         card->metric_srt_send_buffer_available_bytes = stats.byteAvailSndBuf;
2241         card->metric_srt_receive_buffer_available_bytes = stats.byteAvailRcvBuf;
2242         card->metric_srt_mss_bytes = stats.byteMSS;
2243         card->metric_srt_sender_unacked_packets = stats.pktSndBuf;
2244         card->metric_srt_sender_unacked_bytes = stats.byteSndBuf;
2245         card->metric_srt_sender_unacked_timespan_seconds = stats.msSndBuf * 1e-3;
2246         card->metric_srt_sender_delivery_delay_seconds = stats.msSndTsbPdDelay * 1e-3;
2247         card->metric_srt_receiver_unacked_packets = stats.pktRcvBuf;
2248         card->metric_srt_receiver_unacked_bytes = stats.byteRcvBuf;
2249         card->metric_srt_receiver_unacked_timespan_seconds = stats.msRcvBuf * 1e-3;
2250         card->metric_srt_receiver_delivery_delay_seconds = stats.msRcvTsbPdDelay * 1e-3;
2251 }
2252 #endif
2253
2254 string Mixer::description_for_card(unsigned card_index)
2255 {
2256         CaptureCard *card = &cards[card_index];
2257         if (card->capture == nullptr) {
2258                 // Should never be called for inactive cards, but OK.
2259                 char buf[256];
2260                 snprintf(buf, sizeof(buf), "Inactive capture card %u", card_index);
2261                 return buf;
2262         }
2263         if (card->type != CardType::FFMPEG_INPUT) {
2264                 char buf[256];
2265                 snprintf(buf, sizeof(buf), "Capture card %u (%s)", card_index, card->capture->get_description().c_str());
2266                 return buf;
2267         }
2268
2269         // Number (non-SRT) FFmpeg inputs from zero, separately from the capture cards,
2270         // since it's not too obvious for the user that they are “cards”.
2271         unsigned ffmpeg_index = 0;
2272         for (unsigned i = 0; i < card_index; ++i) {
2273                 CaptureCard *other_card = &cards[i];
2274                 if (other_card->type == CardType::FFMPEG_INPUT && !is_srt_card(other_card)) {
2275                         ++ffmpeg_index;
2276                 }
2277         }
2278         char buf[256];
2279         snprintf(buf, sizeof(buf), "Video input %u (%s)", ffmpeg_index, card->capture->get_description().c_str());
2280         return buf;
2281 }
2282
2283 bool Mixer::is_srt_card(const Mixer::CaptureCard *card)
2284 {
2285 #ifdef HAVE_SRT
2286         if (card->type == CardType::FFMPEG_INPUT) {
2287                 int srt_sock = static_cast<FFmpegCapture *>(card->capture.get())->get_srt_sock();
2288                 return srt_sock != -1;
2289         }
2290 #endif
2291         return false;
2292 }
2293
2294 mutex RefCountedGLsync::fence_lock;