]> git.sesse.net Git - stockfish/blobdiff - src/nnue/layers/affine_transform.h
Affine transform robust implementation
[stockfish] / src / nnue / layers / affine_transform.h
index f0292e453c14237e59cd86717c06158103308bbe..adf152eea5b8894fcdf26cdfebffcdbd602b5d7f 100644 (file)
@@ -1,6 +1,6 @@
 /*
   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
-  Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
+  Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
 
   Stockfish is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
@@ -41,6 +41,11 @@ namespace Eval::NNUE::Layers {
     static constexpr IndexType kOutputDimensions = OutputDimensions;
     static constexpr IndexType kPaddedInputDimensions =
         CeilToMultiple<IndexType>(kInputDimensions, kMaxSimdWidth);
+#if defined (USE_AVX512)
+    static constexpr const IndexType kOutputSimdWidth = kSimdWidth / 2;
+#elif defined (USE_SSSE3)
+    static constexpr const IndexType kOutputSimdWidth = kSimdWidth / 4;
+#endif
 
     // Size of forward propagation buffer used in this layer
     static constexpr std::size_t kSelfBufferSize =
@@ -65,7 +70,58 @@ namespace Eval::NNUE::Layers {
       for (std::size_t i = 0; i < kOutputDimensions; ++i)
         biases_[i] = read_little_endian<BiasType>(stream);
       for (std::size_t i = 0; i < kOutputDimensions * kPaddedInputDimensions; ++i)
+#if !defined (USE_SSSE3)
         weights_[i] = read_little_endian<WeightType>(stream);
+#else
+        weights_[
+          (i / 4) % (kPaddedInputDimensions / 4) * kOutputDimensions * 4 +
+          i / kPaddedInputDimensions * 4 +
+          i % 4
+        ] = read_little_endian<WeightType>(stream);
+
+      // Determine if eights of weight and input products can be summed using 16bits
+      // without saturation. We assume worst case combinations of 0 and 127 for all inputs.
+      if (kOutputDimensions > 1 && !stream.fail())
+      {
+          canSaturate16.count = 0;
+#if !defined(USE_VNNI)
+          for (IndexType i = 0; i < kPaddedInputDimensions; i += 16)
+              for (IndexType j = 0; j < kOutputDimensions; ++j)
+                  for (int x = 0; x < 2; ++x)
+                  {
+                      WeightType* w = &weights_[i * kOutputDimensions + j * 4 + x * 2];
+                      int sum[2] = {0, 0};
+                      for (int k = 0; k < 8; ++k)
+                      {
+                          IndexType idx = k / 2 * kOutputDimensions * 4 + k % 2;
+                          sum[w[idx] < 0] += w[idx];
+                      }
+                      for (int sign : {-1, 1})
+                          while (sign * sum[sign == -1] > 258)
+                          {
+                              int maxK = 0, maxW = 0;
+                              for (int k = 0; k < 8; ++k)
+                              {
+                                  IndexType idx = k / 2 * kOutputDimensions * 4 + k % 2;
+                                  if (maxW < sign * w[idx])
+                                      maxK = k, maxW = sign * w[idx];
+                              }
+
+                              IndexType idx = maxK / 2 * kOutputDimensions * 4 + maxK % 2;
+                              sum[sign == -1] -= w[idx];
+                              canSaturate16.add(j, i + maxK / 2 * 4 + maxK % 2 + x * 2, w[idx]);
+                              w[idx] = 0;
+                          }
+                  }
+
+          // Non functional optimization for faster more linear access
+          std::sort(canSaturate16.ids, canSaturate16.ids + canSaturate16.count,
+                    [](const typename CanSaturate::Entry& e1, const typename CanSaturate::Entry& e2)
+                    { return e1.in == e2.in ? e1.out < e2.out : e1.in < e2.in; });
+#endif
+      }
+#endif
+
       return !stream.fail();
     }
 
@@ -83,32 +139,6 @@ namespace Eval::NNUE::Layers {
         return _mm512_reduce_add_epi32(sum) + bias;
       };
 
-      [[maybe_unused]] auto m512_haddx4 = [](__m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3, __m128i bias) -> __m128i {
-        __m512i sum01a = _mm512_unpacklo_epi32(sum0, sum1);
-        __m512i sum01b = _mm512_unpackhi_epi32(sum0, sum1);
-
-        __m512i sum23a = _mm512_unpacklo_epi32(sum2, sum3);
-        __m512i sum23b = _mm512_unpackhi_epi32(sum2, sum3);
-
-        __m512i sum01 = _mm512_add_epi32(sum01a, sum01b);
-        __m512i sum23 = _mm512_add_epi32(sum23a, sum23b);
-
-        __m512i sum0123a = _mm512_unpacklo_epi64(sum01, sum23);
-        __m512i sum0123b = _mm512_unpackhi_epi64(sum01, sum23);
-
-        __m512i sum = _mm512_add_epi32(sum0123a, sum0123b);
-
-        __m256i sum256lo = _mm512_castsi512_si256(sum);
-        __m256i sum256hi = _mm512_extracti64x4_epi64(sum, 1);
-
-        sum256lo = _mm256_add_epi32(sum256lo, sum256hi);
-
-        __m128i sum128lo = _mm256_castsi256_si128(sum256lo);
-        __m128i sum128hi = _mm256_extracti128_si256(sum256lo, 1);
-
-        return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias);
-      };
-
       [[maybe_unused]] auto m512_add_dpbusd_epi32 = [=](__m512i& acc, __m512i a, __m512i b) {
 #if defined (USE_VNNI)
         acc = _mm512_dpbusd_epi32(acc, a, b);
@@ -119,6 +149,26 @@ namespace Eval::NNUE::Layers {
 #endif
       };
 
+      [[maybe_unused]] auto m512_add_dpbusd_epi32x4 = [=](__m512i& acc, __m512i a0, __m512i b0, __m512i a1, __m512i b1,
+                                                                        __m512i a2, __m512i b2, __m512i a3, __m512i b3) {
+#if defined (USE_VNNI)
+        acc = _mm512_dpbusd_epi32(acc, a0, b0);
+        acc = _mm512_dpbusd_epi32(acc, a1, b1);
+        acc = _mm512_dpbusd_epi32(acc, a2, b2);
+        acc = _mm512_dpbusd_epi32(acc, a3, b3);
+#else
+        __m512i product0 = _mm512_maddubs_epi16(a0, b0);
+        __m512i product1 = _mm512_maddubs_epi16(a1, b1);
+        __m512i product2 = _mm512_maddubs_epi16(a2, b2);
+        __m512i product3 = _mm512_maddubs_epi16(a3, b3);
+        product0 = _mm512_add_epi16(product0, product1);
+        product2 = _mm512_add_epi16(product2, product3);
+        product0 = _mm512_add_epi16(product0, product2);
+        product0 = _mm512_madd_epi16(product0, kOnes512);
+        acc = _mm512_add_epi32(acc, product0);
+#endif
+      };
+
 #endif
 #if defined (USE_AVX2)
 
@@ -131,18 +181,6 @@ namespace Eval::NNUE::Layers {
         return _mm_cvtsi128_si32(sum128) + bias;
       };
 
-      [[maybe_unused]] auto m256_haddx4 = [](__m256i sum0, __m256i sum1, __m256i sum2, __m256i sum3, __m128i bias) -> __m128i {
-        sum0 = _mm256_hadd_epi32(sum0, sum1);
-        sum2 = _mm256_hadd_epi32(sum2, sum3);
-
-        sum0 = _mm256_hadd_epi32(sum0, sum2);
-
-        __m128i sum128lo = _mm256_castsi256_si128(sum0);
-        __m128i sum128hi = _mm256_extracti128_si256(sum0, 1);
-
-        return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias);
-      };
-
       [[maybe_unused]] auto m256_add_dpbusd_epi32 = [=](__m256i& acc, __m256i a, __m256i b) {
 #if defined (USE_VNNI)
         acc = _mm256_dpbusd_epi32(acc, a, b);
@@ -153,8 +191,27 @@ namespace Eval::NNUE::Layers {
 #endif
       };
 
+      [[maybe_unused]] auto m256_add_dpbusd_epi32x4 = [=](__m256i& acc, __m256i a0, __m256i b0, __m256i a1, __m256i b1,
+                                                                        __m256i a2, __m256i b2, __m256i a3, __m256i b3) {
+#if defined (USE_VNNI)
+        acc = _mm256_dpbusd_epi32(acc, a0, b0);
+        acc = _mm256_dpbusd_epi32(acc, a1, b1);
+        acc = _mm256_dpbusd_epi32(acc, a2, b2);
+        acc = _mm256_dpbusd_epi32(acc, a3, b3);
+#else
+        __m256i product0 = _mm256_maddubs_epi16(a0, b0);
+        __m256i product1 = _mm256_maddubs_epi16(a1, b1);
+        __m256i product2 = _mm256_maddubs_epi16(a2, b2);
+        __m256i product3 = _mm256_maddubs_epi16(a3, b3);
+        product0 = _mm256_add_epi16(product0, product1);
+        product2 = _mm256_add_epi16(product2, product3);
+        product0 = _mm256_add_epi16(product0, product2);
+        product0 = _mm256_madd_epi16(product0, kOnes256);
+        acc = _mm256_add_epi32(acc, product0);
 #endif
+      };
 
+#endif
 #if defined (USE_SSSE3)
 
       [[maybe_unused]] const __m128i kOnes128 = _mm_set1_epi16(1);
@@ -165,278 +222,119 @@ namespace Eval::NNUE::Layers {
         return _mm_cvtsi128_si32(sum) + bias;
       };
 
-      [[maybe_unused]] auto m128_haddx4 = [](__m128i sum0, __m128i sum1, __m128i sum2, __m128i sum3, __m128i bias) -> __m128i {
-        sum0 = _mm_hadd_epi32(sum0, sum1);
-        sum2 = _mm_hadd_epi32(sum2, sum3);
-
-        sum0 = _mm_hadd_epi32(sum0, sum2);
-
-        return _mm_add_epi32(sum0, bias);
-      };
-
       [[maybe_unused]] auto m128_add_dpbusd_epi32 = [=](__m128i& acc, __m128i a, __m128i b) {
         __m128i product0 = _mm_maddubs_epi16(a, b);
         product0 = _mm_madd_epi16(product0, kOnes128);
         acc = _mm_add_epi32(acc, product0);
       };
 
+      [[maybe_unused]] auto m128_add_dpbusd_epi32x4 = [=](__m128i& acc, __m128i a0, __m128i b0, __m128i a1, __m128i b1,
+                                                                        __m128i a2, __m128i b2, __m128i a3, __m128i b3) {
+        __m128i product0 = _mm_maddubs_epi16(a0, b0);
+        __m128i product1 = _mm_maddubs_epi16(a1, b1);
+        __m128i product2 = _mm_maddubs_epi16(a2, b2);
+        __m128i product3 = _mm_maddubs_epi16(a3, b3);
+        product0 = _mm_adds_epi16(product0, product1);
+        product2 = _mm_adds_epi16(product2, product3);
+        product0 = _mm_adds_epi16(product0, product2);
+        product0 = _mm_madd_epi16(product0, kOnes128);
+        acc = _mm_add_epi32(acc, product0);
+      };
+
 #endif
 
 #if defined (USE_AVX512)
+      using vec_t = __m512i;
+      #define vec_setzero _mm512_setzero_si512
+      #define vec_set_32 _mm512_set1_epi32
+      auto& vec_add_dpbusd_32 = m512_add_dpbusd_epi32;
+      auto& vec_add_dpbusd_32x4 = m512_add_dpbusd_epi32x4;
+      auto& vec_hadd = m512_hadd;
+#elif defined (USE_AVX2)
+      using vec_t = __m256i;
+      #define vec_setzero _mm256_setzero_si256
+      #define vec_set_32 _mm256_set1_epi32
+      auto& vec_add_dpbusd_32 = m256_add_dpbusd_epi32;
+      auto& vec_add_dpbusd_32x4 = m256_add_dpbusd_epi32x4;
+      auto& vec_hadd = m256_hadd;
+#elif defined (USE_SSSE3)
+      using vec_t = __m128i;
+      #define vec_setzero _mm_setzero_si128
+      #define vec_set_32 _mm_set1_epi32
+      auto& vec_add_dpbusd_32 = m128_add_dpbusd_epi32;
+      auto& vec_add_dpbusd_32x4 = m128_add_dpbusd_epi32x4;
+      auto& vec_hadd = m128_hadd;
+#endif
 
-      constexpr IndexType kNumChunks512 = kPaddedInputDimensions / (kSimdWidth * 2);
-      constexpr IndexType kNumChunks256 = kPaddedInputDimensions / kSimdWidth;
+#if defined (USE_SSSE3)
 
       const auto output = reinterpret_cast<OutputType*>(buffer);
+      const auto input_vector = reinterpret_cast<const vec_t*>(input);
 
-      // Since to saturate a zmm register it takes 64 bytes we
-      // cannot use AVX512 for the smaller affine transforms.
-      // Instead we fallback to a AVX2 implementation if the
-      // kInputDimensions isn't a multiple of 64.
-      // Note that this means that for example for
-      // kInputDimensions of 96 we fallback to AVX2 even though
-      // the first 64 elements could be processed with AVX512.
-      // This is caused by mixing the __m256 and __m512 variables
-      // required to better handle that case and it would
-      // require handling more cases statically not to lose performance.
-      // This should be revisited if such input dimensions are to be considered.
-      [[maybe_unused]] const auto input_vector512 = reinterpret_cast<const __m512i*>(input);
-      [[maybe_unused]] const auto input_vector256 = reinterpret_cast<const __m256i*>(input);
+      static_assert(kOutputDimensions % kOutputSimdWidth == 0 || kOutputDimensions == 1);
 
       // kOutputDimensions is either 1 or a multiple of kSimdWidth
       // because then it is also an input dimension.
-      if constexpr (kOutputDimensions % 4 == 0)
+      if constexpr (kOutputDimensions % kOutputSimdWidth == 0)
       {
-        for (IndexType i = 0; i < kOutputDimensions; i += 4)
-        {
-          const IndexType offset0 = (i + 0) * kPaddedInputDimensions;
-          const IndexType offset1 = (i + 1) * kPaddedInputDimensions;
-          const IndexType offset2 = (i + 2) * kPaddedInputDimensions;
-          const IndexType offset3 = (i + 3) * kPaddedInputDimensions;
+          constexpr IndexType kNumChunks = kPaddedInputDimensions / 4;
 
-          const __m128i bias = *reinterpret_cast<const __m128i*>(&biases_[i]);
-          __m128i* outptr = reinterpret_cast<__m128i*>(&output[i]);
+          const auto input32 = reinterpret_cast<const std::int32_t*>(input);
+          vec_t* outptr = reinterpret_cast<vec_t*>(output);
+          std::memcpy(output, biases_, kOutputDimensions * sizeof(OutputType));
 
-          if constexpr (kPaddedInputDimensions % (kSimdWidth * 2) == 0)
+          for (int i = 0; i < (int)kNumChunks - 3; i += 4)
           {
-            __m512i sum0 = _mm512_setzero_si512();
-            __m512i sum1 = _mm512_setzero_si512();
-            __m512i sum2 = _mm512_setzero_si512();
-            __m512i sum3 = _mm512_setzero_si512();
-
-            const auto row0 = reinterpret_cast<const __m512i*>(&weights_[offset0]);
-            const auto row1 = reinterpret_cast<const __m512i*>(&weights_[offset1]);
-            const auto row2 = reinterpret_cast<const __m512i*>(&weights_[offset2]);
-            const auto row3 = reinterpret_cast<const __m512i*>(&weights_[offset3]);
-
-            for (IndexType j = 0; j < kNumChunks512; ++j)
-            {
-              const __m512i in = input_vector512[j];
-
-              m512_add_dpbusd_epi32(sum0, in, row0[j]);
-              m512_add_dpbusd_epi32(sum1, in, row1[j]);
-              m512_add_dpbusd_epi32(sum2, in, row2[j]);
-              m512_add_dpbusd_epi32(sum3, in, row3[j]);
-            }
-
-            *outptr = m512_haddx4(sum0, sum1, sum2, sum3, bias);
+              const vec_t in0 = vec_set_32(input32[i + 0]);
+              const vec_t in1 = vec_set_32(input32[i + 1]);
+              const vec_t in2 = vec_set_32(input32[i + 2]);
+              const vec_t in3 = vec_set_32(input32[i + 3]);
+              const auto col0 = reinterpret_cast<const vec_t*>(&weights_[(i + 0) * kOutputDimensions * 4]);
+              const auto col1 = reinterpret_cast<const vec_t*>(&weights_[(i + 1) * kOutputDimensions * 4]);
+              const auto col2 = reinterpret_cast<const vec_t*>(&weights_[(i + 2) * kOutputDimensions * 4]);
+              const auto col3 = reinterpret_cast<const vec_t*>(&weights_[(i + 3) * kOutputDimensions * 4]);
+              for (int j = 0; j * kOutputSimdWidth < kOutputDimensions; ++j)
+                  vec_add_dpbusd_32x4(outptr[j], in0, col0[j], in1, col1[j], in2, col2[j], in3, col3[j]);
           }
-          else
-          {
-            __m256i sum0 = _mm256_setzero_si256();
-            __m256i sum1 = _mm256_setzero_si256();
-            __m256i sum2 = _mm256_setzero_si256();
-            __m256i sum3 = _mm256_setzero_si256();
-
-            const auto row0 = reinterpret_cast<const __m256i*>(&weights_[offset0]);
-            const auto row1 = reinterpret_cast<const __m256i*>(&weights_[offset1]);
-            const auto row2 = reinterpret_cast<const __m256i*>(&weights_[offset2]);
-            const auto row3 = reinterpret_cast<const __m256i*>(&weights_[offset3]);
-
-            for (IndexType j = 0; j < kNumChunks256; ++j)
-            {
-              const __m256i in = input_vector256[j];
-
-              m256_add_dpbusd_epi32(sum0, in, row0[j]);
-              m256_add_dpbusd_epi32(sum1, in, row1[j]);
-              m256_add_dpbusd_epi32(sum2, in, row2[j]);
-              m256_add_dpbusd_epi32(sum3, in, row3[j]);
-            }
-
-            *outptr = m256_haddx4(sum0, sum1, sum2, sum3, bias);
-          }
-        }
+          for (int i = 0; i < canSaturate16.count; ++i)
+              output[canSaturate16.ids[i].out] += input[canSaturate16.ids[i].in] * canSaturate16.ids[i].w;
       }
       else if constexpr (kOutputDimensions == 1)
       {
-        if constexpr (kPaddedInputDimensions % (kSimdWidth * 2) == 0)
-        {
-          __m512i sum0 = _mm512_setzero_si512();
-
-          const auto row0 = reinterpret_cast<const __m512i*>(&weights_[0]);
-
-          for (IndexType j = 0; j < kNumChunks512; ++j)
-          {
-            const __m512i in = input_vector512[j];
-
-            m512_add_dpbusd_epi32(sum0, in, row0[j]);
-          }
-
-          output[0] = m512_hadd(sum0, biases_[0]);
-        }
-        else
-        {
-          __m256i sum0 = _mm256_setzero_si256();
-
-          const auto row0 = reinterpret_cast<const __m256i*>(&weights_[0]);
-
-          for (IndexType j = 0; j < kNumChunks256; ++j)
-          {
-            const __m256i in = input_vector256[j];
-
-            m256_add_dpbusd_epi32(sum0, in, row0[j]);
-          }
-
-          output[0] = m256_hadd(sum0, biases_[0]);
-        }
-      }
-      else
-      {
-        // This case can never happen because kOutputDimensions
-        // is always 1 or a multiple of kSimdWidth.
-        assert(false);
-      }
-
-#elif defined (USE_AVX2)
-
-      constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
-
-      const auto output = reinterpret_cast<OutputType*>(buffer);
-      const auto input_vector = reinterpret_cast<const __m256i*>(input);
-
-      // kOutputDimensions is either 1 or a multiple of kSimdWidth
-      // because then it is also an input dimension.
-      if constexpr (kOutputDimensions % 4 == 0)
-      {
-        for (IndexType i = 0; i < kOutputDimensions; i += 4)
-        {
-          const IndexType offset0 = (i + 0) * kPaddedInputDimensions;
-          const IndexType offset1 = (i + 1) * kPaddedInputDimensions;
-          const IndexType offset2 = (i + 2) * kPaddedInputDimensions;
-          const IndexType offset3 = (i + 3) * kPaddedInputDimensions;
-
-          const __m128i bias = *reinterpret_cast<const __m128i*>(&biases_[i]);
-          __m128i* outptr = reinterpret_cast<__m128i*>(&output[i]);
-
-          __m256i sum0 = _mm256_setzero_si256();
-          __m256i sum1 = _mm256_setzero_si256();
-          __m256i sum2 = _mm256_setzero_si256();
-          __m256i sum3 = _mm256_setzero_si256();
-
-          const auto row0 = reinterpret_cast<const __m256i*>(&weights_[offset0]);
-          const auto row1 = reinterpret_cast<const __m256i*>(&weights_[offset1]);
-          const auto row2 = reinterpret_cast<const __m256i*>(&weights_[offset2]);
-          const auto row3 = reinterpret_cast<const __m256i*>(&weights_[offset3]);
-
-          for (IndexType j = 0; j < kNumChunks; ++j)
+#if defined (USE_AVX512)
+          if constexpr (kPaddedInputDimensions % (kSimdWidth * 2) != 0)
           {
-            const __m256i in = input_vector[j];
-
-            m256_add_dpbusd_epi32(sum0, in, row0[j]);
-            m256_add_dpbusd_epi32(sum1, in, row1[j]);
-            m256_add_dpbusd_epi32(sum2, in, row2[j]);
-            m256_add_dpbusd_epi32(sum3, in, row3[j]);
+              constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
+              const auto input_vector256 = reinterpret_cast<const __m256i*>(input);
+
+              __m256i sum0 = _mm256_setzero_si256();
+              const auto row0 = reinterpret_cast<const __m256i*>(&weights_[0]);
+
+              for (int j = 0; j < (int)kNumChunks; ++j)
+              {
+                  const __m256i in = input_vector256[j];
+                  m256_add_dpbusd_epi32(sum0, in, row0[j]);
+              }
+              output[0] = m256_hadd(sum0, biases_[0]);
           }
-
-          *outptr = m256_haddx4(sum0, sum1, sum2, sum3, bias);
-        }
-      }
-      else if constexpr (kOutputDimensions == 1)
-      {
-        __m256i sum0 = _mm256_setzero_si256();
-
-        const auto row0 = reinterpret_cast<const __m256i*>(&weights_[0]);
-
-        for (IndexType j = 0; j < kNumChunks; ++j)
-        {
-          const __m256i in = input_vector[j];
-
-            m256_add_dpbusd_epi32(sum0, in, row0[j]);
-        }
-
-        output[0] = m256_hadd(sum0, biases_[0]);
-      }
-      else
-      {
-        // This case can never happen because kOutputDimensions
-        // is always 1 or a multiple of kSimdWidth.
-        assert(false);
-      }
-
-#elif defined (USE_SSSE3)
-
-      constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
-
-      auto output = reinterpret_cast<OutputType*>(buffer);
-      const auto input_vector = reinterpret_cast<const __m128i*>(input);
-
-      // kOutputDimensions is either 1 or a multiple of kSimdWidth
-      // because then it is also an input dimension.
-      if constexpr (kOutputDimensions % 4 == 0)
-      {
-        for (IndexType i = 0; i < kOutputDimensions; i += 4)
-        {
-          const IndexType offset0 = (i + 0) * kPaddedInputDimensions;
-          const IndexType offset1 = (i + 1) * kPaddedInputDimensions;
-          const IndexType offset2 = (i + 2) * kPaddedInputDimensions;
-          const IndexType offset3 = (i + 3) * kPaddedInputDimensions;
-
-          const __m128i bias = *reinterpret_cast<const __m128i*>(&biases_[i]);
-          __m128i* outptr = reinterpret_cast<__m128i*>(&output[i]);
-
-          __m128i sum0 = _mm_setzero_si128();
-          __m128i sum1 = _mm_setzero_si128();
-          __m128i sum2 = _mm_setzero_si128();
-          __m128i sum3 = _mm_setzero_si128();
-
-          const auto row0 = reinterpret_cast<const __m128i*>(&weights_[offset0]);
-          const auto row1 = reinterpret_cast<const __m128i*>(&weights_[offset1]);
-          const auto row2 = reinterpret_cast<const __m128i*>(&weights_[offset2]);
-          const auto row3 = reinterpret_cast<const __m128i*>(&weights_[offset3]);
-
-          for (int j = 0; j < (int)kNumChunks; j += 1)
+          else
+#endif
           {
-            const __m128i in = input_vector[j];
-
-            m128_add_dpbusd_epi32(sum0, in, row0[j]);
-            m128_add_dpbusd_epi32(sum1, in, row1[j]);
-            m128_add_dpbusd_epi32(sum2, in, row2[j]);
-            m128_add_dpbusd_epi32(sum3, in, row3[j]);
+#if defined (USE_AVX512)
+              constexpr IndexType kNumChunks = kPaddedInputDimensions / (kSimdWidth * 2);
+#else
+              constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
+#endif
+              vec_t sum0 = vec_setzero();
+              const auto row0 = reinterpret_cast<const vec_t*>(&weights_[0]);
+
+              for (int j = 0; j < (int)kNumChunks; ++j)
+              {
+                  const vec_t in = input_vector[j];
+                  vec_add_dpbusd_32(sum0, in, row0[j]);
+              }
+              output[0] = vec_hadd(sum0, biases_[0]);
           }
-
-          *outptr = m128_haddx4(sum0, sum1, sum2, sum3, bias);
-        }
-      }
-      else if constexpr (kOutputDimensions == 1)
-      {
-        __m128i sum0 = _mm_setzero_si128();
-
-        const auto row0 = reinterpret_cast<const __m128i*>(&weights_[0]);
-
-        for (int j = 0; j < (int)kNumChunks; j += 1)
-        {
-          const __m128i in = input_vector[j];
-
-          m128_add_dpbusd_epi32(sum0, in, row0[j]);
-        }
-
-        output[0] = m128_hadd(sum0, biases_[0]);
-      }
-      else
-      {
-        // This case can never happen because kOutputDimensions
-        // is always 1 or a multiple of kSimdWidth.
-        assert(false);
       }
 
 #else
@@ -447,11 +345,7 @@ namespace Eval::NNUE::Layers {
 
 #if defined(USE_SSE2)
       constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
-#ifndef USE_SSSE3
       const __m128i kZeros = _mm_setzero_si128();
-#else
-      const __m128i kOnes = _mm_set1_epi16(1);
-#endif
       const auto input_vector = reinterpret_cast<const __m128i*>(input);
 
 #elif defined(USE_MMX)
@@ -474,9 +368,8 @@ namespace Eval::NNUE::Layers {
         for (IndexType j = 0; j < kNumChunks; ++j) {
           __m128i row_j = _mm_load_si128(&row[j]);
           __m128i input_j = _mm_load_si128(&input_vector[j]);
-          __m128i row_signs = _mm_cmpgt_epi8(kZeros, row_j);
-          __m128i extended_row_lo = _mm_unpacklo_epi8(row_j, row_signs);
-          __m128i extended_row_hi = _mm_unpackhi_epi8(row_j, row_signs);
+          __m128i extended_row_lo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
+          __m128i extended_row_hi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
           __m128i extended_input_lo = _mm_unpacklo_epi8(input_j, kZeros);
           __m128i extended_input_hi = _mm_unpackhi_epi8(input_j, kZeros);
           __m128i product_lo = _mm_madd_epi16(extended_row_lo, extended_input_lo);
@@ -498,9 +391,8 @@ namespace Eval::NNUE::Layers {
         for (IndexType j = 0; j < kNumChunks; ++j) {
           __m64 row_j = row[j];
           __m64 input_j = input_vector[j];
-          __m64 row_signs = _mm_cmpgt_pi8(kZeros, row_j);
-          __m64 extended_row_lo = _mm_unpacklo_pi8(row_j, row_signs);
-          __m64 extended_row_hi = _mm_unpackhi_pi8(row_j, row_signs);
+          __m64 extended_row_lo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8);
+          __m64 extended_row_hi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8);
           __m64 extended_input_lo = _mm_unpacklo_pi8(input_j, kZeros);
           __m64 extended_input_hi = _mm_unpackhi_pi8(input_j, kZeros);
           __m64 product_lo = _mm_madd_pi16(extended_row_lo, extended_input_lo);
@@ -547,8 +439,24 @@ namespace Eval::NNUE::Layers {
     PreviousLayer previous_layer_;
 
     alignas(kCacheLineSize) BiasType biases_[kOutputDimensions];
-    alignas(kCacheLineSize)
-        WeightType weights_[kOutputDimensions * kPaddedInputDimensions];
+    alignas(kCacheLineSize) WeightType weights_[kOutputDimensions * kPaddedInputDimensions];
+#if defined (USE_SSSE3)
+    struct CanSaturate {
+        int count;
+        struct Entry {
+            uint16_t out;
+            uint16_t in;
+            int8_t w;
+        } ids[kPaddedInputDimensions * kOutputDimensions * 3 / 4];
+
+        void add(int i, int j, int8_t w) {
+            ids[count].out = i;
+            ids[count].in = j;
+            ids[count].w = w;
+            ++count;
+        }
+    } canSaturate16;
+#endif
   };
 
 }  // namespace Eval::NNUE::Layers