]> git.sesse.net Git - stockfish/blobdiff - src/timeman.cpp
Fix compilation after recent merge.
[stockfish] / src / timeman.cpp
index 7a5db255142e91b6d696f516ccd58e4945e948d9..f404ee0c353eb96215db47c14c500e3bc1c58246 100644 (file)
@@ -1,7 +1,6 @@
 /*
   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
-  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
-  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
+  Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
 
   Stockfish is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
 
+#include "timeman.h"
+
 #include <algorithm>
-#include <cfloat>
 #include <cmath>
 
 #include "search.h"
-#include "timeman.h"
 #include "uci.h"
 
-TimeManagement Time; // Our global time management object
-
-namespace {
-
-  enum TimeType { OptimumTime, MaxTime };
-
-  const int MoveHorizon   = 50;   // Plan time management at most this many moves ahead
-  const double MaxRatio   = 7.0;  // When in trouble, we can step over reserved time with this ratio
-  const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio
-
-
-  // move_importance() is a skew-logistic function based on naive statistical
-  // analysis of "how many games are still undecided after n half-moves". Game
-  // is considered "undecided" as long as neither side has >275cp advantage.
-  // Data was extracted from CCRL game database with some simple filtering criteria.
-
-  double move_importance(int ply) {
-
-    const double XScale = 9.3;
-    const double XShift = 59.8;
-    const double Skew   = 0.172;
-
-    return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero
-  }
-
-  template<TimeType T>
-  int remaining(int myTime, int movesToGo, int ply, int slowMover)
-  {
-    const double TMaxRatio   = (T == OptimumTime ? 1 : MaxRatio);
-    const double TStealRatio = (T == OptimumTime ? 0 : StealRatio);
-
-    double moveImportance = (move_importance(ply) * slowMover) / 100;
-    double otherMovesImportance = 0;
-
-    for (int i = 1; i < movesToGo; ++i)
-        otherMovesImportance += move_importance(ply + 2 * i);
-
-    double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance);
-    double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance);
-
-    return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks an explicit cast
-  }
-
-} // namespace
-
-
-/// init() is called at the beginning of the search and calculates the allowed
-/// thinking time out of the time control and current game ply. We support four
-/// different kinds of time controls, passed in 'limits':
-///
-///  inc == 0 && movestogo == 0 means: x basetime  [sudden death!]
-///  inc == 0 && movestogo != 0 means: x moves in y minutes
-///  inc >  0 && movestogo == 0 means: x basetime + z increment
-///  inc >  0 && movestogo != 0 means: x moves in y minutes + z increment
-
-void TimeManagement::init(Search::LimitsType& limits, Color us, int ply, TimePoint now)
-{
-  int minThinkingTime = Options["Minimum Thinking Time"];
-  int moveOverhead    = Options["Move Overhead"];
-  int slowMover       = Options["Slow Mover"];
-  int npmsec          = Options["nodestime"];
-
-  // If we have to play in 'nodes as time' mode, then convert from time
-  // to nodes, and use resulting values in time management formulas.
-  // WARNING: Given npms (nodes per millisecond) must be much lower then
-  // real engine speed to avoid time losses.
-  if (npmsec)
-  {
-      if (!availableNodes) // Only once at game start
-          availableNodes = npmsec * limits.time[us]; // Time is in msec
-
-      // Convert from millisecs to nodes
-      limits.time[us] = (int)availableNodes;
-      limits.inc[us] *= npmsec;
-      limits.npmsec = npmsec;
-  }
-
-  start = now;
-  unstablePvFactor = 1;
-  optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime);
-
-  const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon;
-
-  // We calculate optimum time usage for different hypothetical "moves to go"-values
-  // and choose the minimum of calculated search time values. Usually the greatest
-  // hypMTG gives the minimum values.
-  for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG)
-  {
-      // Calculate thinking time for hypothetical "moves to go"-value
-      int hypMyTime =  limits.time[us]
-                     + limits.inc[us] * (hypMTG - 1)
-                     - moveOverhead * (2 + std::min(hypMTG, 40));
-
-      hypMyTime = std::max(hypMyTime, 0);
-
-      int t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, ply, slowMover);
-      int t2 = minThinkingTime + remaining<MaxTime    >(hypMyTime, hypMTG, ply, slowMover);
-
-      optimumTime = std::min(t1, optimumTime);
-      maximumTime = std::min(t2, maximumTime);
-  }
-
-  if (Options["Ponder"])
-      optimumTime += optimumTime / 4;
-
-  optimumTime = std::min(optimumTime, maximumTime);
+namespace Stockfish {
+
+TimeManagement Time;  // Our global time management object
+
+
+// Called at the beginning of the search and calculates
+// the bounds of time allowed for the current game ply. We currently support:
+//      1) x basetime (+ z increment)
+//      2) x moves in y seconds (+ z increment)
+void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
+
+    // If we have no time, no need to initialize TM, except for the start time,
+    // which is used by movetime.
+    startTime = limits.startTime;
+    if (limits.time[us] == 0)
+        return;
+
+    TimePoint moveOverhead = TimePoint(Options["Move Overhead"]);
+    TimePoint npmsec       = TimePoint(Options["nodestime"]);
+
+    // optScale is a percentage of available time to use for the current move.
+    // maxScale is a multiplier applied to optimumTime.
+    double optScale, maxScale;
+
+    // If we have to play in 'nodes as time' mode, then convert from time
+    // to nodes, and use resulting values in time management formulas.
+    // WARNING: to avoid time losses, the given npmsec (nodes per millisecond)
+    // must be much lower than the real engine speed.
+    if (npmsec)
+    {
+        if (!availableNodes)                            // Only once at game start
+            availableNodes = npmsec * limits.time[us];  // Time is in msec
+
+        // Convert from milliseconds to nodes
+        limits.time[us] = TimePoint(availableNodes);
+        limits.inc[us] *= npmsec;
+        limits.npmsec = npmsec;
+    }
+
+    // Maximum move horizon of 50 moves
+    int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50;
+
+    // Make sure timeLeft is > 0 since we may use it as a divisor
+    TimePoint timeLeft = std::max(TimePoint(1), limits.time[us] + limits.inc[us] * (mtg - 1)
+                                                  - moveOverhead * (2 + mtg));
+
+    // Use extra time with larger increments
+    double optExtra = std::clamp(1.0 + 12.5 * limits.inc[us] / limits.time[us], 1.0, 1.11);
+
+    // Calculate time constants based on current time left.
+    double optConstant = std::min(0.00334 + 0.0003 * std::log10(limits.time[us] / 1000.0), 0.0049);
+    double maxConstant = std::max(3.4 + 3.0 * std::log10(limits.time[us] / 1000.0), 2.76);
+
+    // x basetime (+ z increment)
+    // If there is a healthy increment, timeLeft can exceed actual available
+    // game time for the current move, so also cap to 20% of available game time.
+    if (limits.movestogo == 0)
+    {
+        optScale = std::min(0.0120 + std::pow(ply + 3.1, 0.44) * optConstant,
+                            0.21 * limits.time[us] / double(timeLeft))
+                 * optExtra;
+        maxScale = std::min(6.9, maxConstant + ply / 12.2);
+    }
+
+    // x moves in y seconds (+ z increment)
+    else
+    {
+        optScale = std::min((0.88 + ply / 116.4) / mtg, 0.88 * limits.time[us] / double(timeLeft));
+        maxScale = std::min(6.3, 1.5 + 0.11 * mtg);
+    }
+
+    // Limit the maximum possible time for this move
+    optimumTime = TimePoint(optScale * timeLeft);
+    maximumTime =
+      TimePoint(std::min(0.84 * limits.time[us] - moveOverhead, maxScale * optimumTime)) - 10;
+
+    if (Options["Ponder"])
+        optimumTime += optimumTime / 4;
 }
+
+}  // namespace Stockfish