]> git.sesse.net Git - bcachefs-tools-debian/blob - c_src/libbcachefs/bset.c
rust: bump rpassword to v7.x
[bcachefs-tools-debian] / c_src / libbcachefs / bset.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for working with individual keys, and sorted sets of keys with in a
4  * btree node
5  *
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcachefs.h"
10 #include "btree_cache.h"
11 #include "bset.h"
12 #include "eytzinger.h"
13 #include "trace.h"
14 #include "util.h"
15
16 #include <asm/unaligned.h>
17 #include <linux/console.h>
18 #include <linux/random.h>
19 #include <linux/prefetch.h>
20
21 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *,
22                                                   struct btree *);
23
24 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
25 {
26         unsigned n = ARRAY_SIZE(iter->data);
27
28         while (n && __btree_node_iter_set_end(iter, n - 1))
29                 --n;
30
31         return n;
32 }
33
34 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
35 {
36         return bch2_bkey_to_bset_inlined(b, k);
37 }
38
39 /*
40  * There are never duplicate live keys in the btree - but including keys that
41  * have been flagged as deleted (and will be cleaned up later) we _will_ see
42  * duplicates.
43  *
44  * Thus the sort order is: usual key comparison first, but for keys that compare
45  * equal the deleted key(s) come first, and the (at most one) live version comes
46  * last.
47  *
48  * The main reason for this is insertion: to handle overwrites, we first iterate
49  * over keys that compare equal to our insert key, and then insert immediately
50  * prior to the first key greater than the key we're inserting - our insert
51  * position will be after all keys that compare equal to our insert key, which
52  * by the time we actually do the insert will all be deleted.
53  */
54
55 void bch2_dump_bset(struct bch_fs *c, struct btree *b,
56                     struct bset *i, unsigned set)
57 {
58         struct bkey_packed *_k, *_n;
59         struct bkey uk, n;
60         struct bkey_s_c k;
61         struct printbuf buf = PRINTBUF;
62
63         if (!i->u64s)
64                 return;
65
66         for (_k = i->start;
67              _k < vstruct_last(i);
68              _k = _n) {
69                 _n = bkey_p_next(_k);
70
71                 if (!_k->u64s) {
72                         printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set,
73                                _k->_data - i->_data);
74                         break;
75                 }
76
77                 k = bkey_disassemble(b, _k, &uk);
78
79                 printbuf_reset(&buf);
80                 if (c)
81                         bch2_bkey_val_to_text(&buf, c, k);
82                 else
83                         bch2_bkey_to_text(&buf, k.k);
84                 printk(KERN_ERR "block %u key %5zu: %s\n", set,
85                        _k->_data - i->_data, buf.buf);
86
87                 if (_n == vstruct_last(i))
88                         continue;
89
90                 n = bkey_unpack_key(b, _n);
91
92                 if (bpos_lt(n.p, k.k->p)) {
93                         printk(KERN_ERR "Key skipped backwards\n");
94                         continue;
95                 }
96
97                 if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p))
98                         printk(KERN_ERR "Duplicate keys\n");
99         }
100
101         printbuf_exit(&buf);
102 }
103
104 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b)
105 {
106         struct bset_tree *t;
107
108         console_lock();
109         for_each_bset(b, t)
110                 bch2_dump_bset(c, b, bset(b, t), t - b->set);
111         console_unlock();
112 }
113
114 void bch2_dump_btree_node_iter(struct btree *b,
115                               struct btree_node_iter *iter)
116 {
117         struct btree_node_iter_set *set;
118         struct printbuf buf = PRINTBUF;
119
120         printk(KERN_ERR "btree node iter with %u/%u sets:\n",
121                __btree_node_iter_used(iter), b->nsets);
122
123         btree_node_iter_for_each(iter, set) {
124                 struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
125                 struct bset_tree *t = bch2_bkey_to_bset(b, k);
126                 struct bkey uk = bkey_unpack_key(b, k);
127
128                 printbuf_reset(&buf);
129                 bch2_bkey_to_text(&buf, &uk);
130                 printk(KERN_ERR "set %zu key %u: %s\n",
131                        t - b->set, set->k, buf.buf);
132         }
133
134         printbuf_exit(&buf);
135 }
136
137 #ifdef CONFIG_BCACHEFS_DEBUG
138
139 void __bch2_verify_btree_nr_keys(struct btree *b)
140 {
141         struct bset_tree *t;
142         struct bkey_packed *k;
143         struct btree_nr_keys nr = { 0 };
144
145         for_each_bset(b, t)
146                 bset_tree_for_each_key(b, t, k)
147                         if (!bkey_deleted(k))
148                                 btree_keys_account_key_add(&nr, t - b->set, k);
149
150         BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
151 }
152
153 static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter,
154                                             struct btree *b)
155 {
156         struct btree_node_iter iter = *_iter;
157         const struct bkey_packed *k, *n;
158
159         k = bch2_btree_node_iter_peek_all(&iter, b);
160         __bch2_btree_node_iter_advance(&iter, b);
161         n = bch2_btree_node_iter_peek_all(&iter, b);
162
163         bkey_unpack_key(b, k);
164
165         if (n &&
166             bkey_iter_cmp(b, k, n) > 0) {
167                 struct btree_node_iter_set *set;
168                 struct bkey ku = bkey_unpack_key(b, k);
169                 struct bkey nu = bkey_unpack_key(b, n);
170                 struct printbuf buf1 = PRINTBUF;
171                 struct printbuf buf2 = PRINTBUF;
172
173                 bch2_dump_btree_node(NULL, b);
174                 bch2_bkey_to_text(&buf1, &ku);
175                 bch2_bkey_to_text(&buf2, &nu);
176                 printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n",
177                        buf1.buf, buf2.buf);
178                 printk(KERN_ERR "iter was:");
179
180                 btree_node_iter_for_each(_iter, set) {
181                         struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k);
182                         struct bset_tree *t = bch2_bkey_to_bset(b, k2);
183                         printk(" [%zi %zi]", t - b->set,
184                                k2->_data - bset(b, t)->_data);
185                 }
186                 panic("\n");
187         }
188 }
189
190 void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
191                                  struct btree *b)
192 {
193         struct btree_node_iter_set *set, *s2;
194         struct bkey_packed *k, *p;
195         struct bset_tree *t;
196
197         if (bch2_btree_node_iter_end(iter))
198                 return;
199
200         /* Verify no duplicates: */
201         btree_node_iter_for_each(iter, set) {
202                 BUG_ON(set->k > set->end);
203                 btree_node_iter_for_each(iter, s2)
204                         BUG_ON(set != s2 && set->end == s2->end);
205         }
206
207         /* Verify that set->end is correct: */
208         btree_node_iter_for_each(iter, set) {
209                 for_each_bset(b, t)
210                         if (set->end == t->end_offset)
211                                 goto found;
212                 BUG();
213 found:
214                 BUG_ON(set->k < btree_bkey_first_offset(t) ||
215                        set->k >= t->end_offset);
216         }
217
218         /* Verify iterator is sorted: */
219         btree_node_iter_for_each(iter, set)
220                 BUG_ON(set != iter->data &&
221                        btree_node_iter_cmp(b, set[-1], set[0]) > 0);
222
223         k = bch2_btree_node_iter_peek_all(iter, b);
224
225         for_each_bset(b, t) {
226                 if (iter->data[0].end == t->end_offset)
227                         continue;
228
229                 p = bch2_bkey_prev_all(b, t,
230                         bch2_btree_node_iter_bset_pos(iter, b, t));
231
232                 BUG_ON(p && bkey_iter_cmp(b, k, p) < 0);
233         }
234 }
235
236 void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where,
237                             struct bkey_packed *insert, unsigned clobber_u64s)
238 {
239         struct bset_tree *t = bch2_bkey_to_bset(b, where);
240         struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where);
241         struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s);
242         struct printbuf buf1 = PRINTBUF;
243         struct printbuf buf2 = PRINTBUF;
244 #if 0
245         BUG_ON(prev &&
246                bkey_iter_cmp(b, prev, insert) > 0);
247 #else
248         if (prev &&
249             bkey_iter_cmp(b, prev, insert) > 0) {
250                 struct bkey k1 = bkey_unpack_key(b, prev);
251                 struct bkey k2 = bkey_unpack_key(b, insert);
252
253                 bch2_dump_btree_node(NULL, b);
254                 bch2_bkey_to_text(&buf1, &k1);
255                 bch2_bkey_to_text(&buf2, &k2);
256
257                 panic("prev > insert:\n"
258                       "prev    key %s\n"
259                       "insert  key %s\n",
260                       buf1.buf, buf2.buf);
261         }
262 #endif
263 #if 0
264         BUG_ON(next != btree_bkey_last(b, t) &&
265                bkey_iter_cmp(b, insert, next) > 0);
266 #else
267         if (next != btree_bkey_last(b, t) &&
268             bkey_iter_cmp(b, insert, next) > 0) {
269                 struct bkey k1 = bkey_unpack_key(b, insert);
270                 struct bkey k2 = bkey_unpack_key(b, next);
271
272                 bch2_dump_btree_node(NULL, b);
273                 bch2_bkey_to_text(&buf1, &k1);
274                 bch2_bkey_to_text(&buf2, &k2);
275
276                 panic("insert > next:\n"
277                       "insert  key %s\n"
278                       "next    key %s\n",
279                       buf1.buf, buf2.buf);
280         }
281 #endif
282 }
283
284 #else
285
286 static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
287                                                    struct btree *b) {}
288
289 #endif
290
291 /* Auxiliary search trees */
292
293 #define BFLOAT_FAILED_UNPACKED  U8_MAX
294 #define BFLOAT_FAILED           U8_MAX
295
296 struct bkey_float {
297         u8              exponent;
298         u8              key_offset;
299         u16             mantissa;
300 };
301 #define BKEY_MANTISSA_BITS      16
302
303 static unsigned bkey_float_byte_offset(unsigned idx)
304 {
305         return idx * sizeof(struct bkey_float);
306 }
307
308 struct ro_aux_tree {
309         u8                      nothing[0];
310         struct bkey_float       f[];
311 };
312
313 struct rw_aux_tree {
314         u16             offset;
315         struct bpos     k;
316 };
317
318 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
319 {
320         BUG_ON(t->aux_data_offset == U16_MAX);
321
322         switch (bset_aux_tree_type(t)) {
323         case BSET_NO_AUX_TREE:
324                 return t->aux_data_offset;
325         case BSET_RO_AUX_TREE:
326                 return t->aux_data_offset +
327                         DIV_ROUND_UP(t->size * sizeof(struct bkey_float) +
328                                      t->size * sizeof(u8), 8);
329         case BSET_RW_AUX_TREE:
330                 return t->aux_data_offset +
331                         DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
332         default:
333                 BUG();
334         }
335 }
336
337 static unsigned bset_aux_tree_buf_start(const struct btree *b,
338                                         const struct bset_tree *t)
339 {
340         return t == b->set
341                 ? DIV_ROUND_UP(b->unpack_fn_len, 8)
342                 : bset_aux_tree_buf_end(t - 1);
343 }
344
345 static void *__aux_tree_base(const struct btree *b,
346                              const struct bset_tree *t)
347 {
348         return b->aux_data + t->aux_data_offset * 8;
349 }
350
351 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
352                                             const struct bset_tree *t)
353 {
354         EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
355
356         return __aux_tree_base(b, t);
357 }
358
359 static u8 *ro_aux_tree_prev(const struct btree *b,
360                             const struct bset_tree *t)
361 {
362         EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
363
364         return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size);
365 }
366
367 static struct bkey_float *bkey_float(const struct btree *b,
368                                      const struct bset_tree *t,
369                                      unsigned idx)
370 {
371         return ro_aux_tree_base(b, t)->f + idx;
372 }
373
374 static void bset_aux_tree_verify(const struct btree *b)
375 {
376 #ifdef CONFIG_BCACHEFS_DEBUG
377         const struct bset_tree *t;
378
379         for_each_bset(b, t) {
380                 if (t->aux_data_offset == U16_MAX)
381                         continue;
382
383                 BUG_ON(t != b->set &&
384                        t[-1].aux_data_offset == U16_MAX);
385
386                 BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
387                 BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
388                 BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
389         }
390 #endif
391 }
392
393 void bch2_btree_keys_init(struct btree *b)
394 {
395         unsigned i;
396
397         b->nsets                = 0;
398         memset(&b->nr, 0, sizeof(b->nr));
399
400         for (i = 0; i < MAX_BSETS; i++)
401                 b->set[i].data_offset = U16_MAX;
402
403         bch2_bset_set_no_aux_tree(b, b->set);
404 }
405
406 /* Binary tree stuff for auxiliary search trees */
407
408 /*
409  * Cacheline/offset <-> bkey pointer arithmetic:
410  *
411  * t->tree is a binary search tree in an array; each node corresponds to a key
412  * in one cacheline in t->set (BSET_CACHELINE bytes).
413  *
414  * This means we don't have to store the full index of the key that a node in
415  * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
416  * then bkey_float->m gives us the offset within that cacheline, in units of 8
417  * bytes.
418  *
419  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
420  * make this work.
421  *
422  * To construct the bfloat for an arbitrary key we need to know what the key
423  * immediately preceding it is: we have to check if the two keys differ in the
424  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
425  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
426  */
427
428 static inline void *bset_cacheline(const struct btree *b,
429                                    const struct bset_tree *t,
430                                    unsigned cacheline)
431 {
432         return (void *) round_down((unsigned long) btree_bkey_first(b, t),
433                                    L1_CACHE_BYTES) +
434                 cacheline * BSET_CACHELINE;
435 }
436
437 static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
438                                              const struct bset_tree *t,
439                                              unsigned cacheline,
440                                              unsigned offset)
441 {
442         return bset_cacheline(b, t, cacheline) + offset * 8;
443 }
444
445 static unsigned bkey_to_cacheline(const struct btree *b,
446                                   const struct bset_tree *t,
447                                   const struct bkey_packed *k)
448 {
449         return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
450 }
451
452 static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
453                                           const struct bset_tree *t,
454                                           unsigned cacheline,
455                                           const struct bkey_packed *k)
456 {
457         return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
458 }
459
460 static unsigned bkey_to_cacheline_offset(const struct btree *b,
461                                          const struct bset_tree *t,
462                                          unsigned cacheline,
463                                          const struct bkey_packed *k)
464 {
465         size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
466
467         EBUG_ON(m > U8_MAX);
468         return m;
469 }
470
471 static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
472                                                const struct bset_tree *t,
473                                                unsigned j)
474 {
475         return cacheline_to_bkey(b, t,
476                         __eytzinger1_to_inorder(j, t->size - 1, t->extra),
477                         bkey_float(b, t, j)->key_offset);
478 }
479
480 static struct bkey_packed *tree_to_prev_bkey(const struct btree *b,
481                                              const struct bset_tree *t,
482                                              unsigned j)
483 {
484         unsigned prev_u64s = ro_aux_tree_prev(b, t)[j];
485
486         return (void *) ((u64 *) tree_to_bkey(b, t, j)->_data - prev_u64s);
487 }
488
489 static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
490                                        const struct bset_tree *t)
491 {
492         EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
493
494         return __aux_tree_base(b, t);
495 }
496
497 /*
498  * For the write set - the one we're currently inserting keys into - we don't
499  * maintain a full search tree, we just keep a simple lookup table in t->prev.
500  */
501 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
502                                           struct bset_tree *t,
503                                           unsigned j)
504 {
505         return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
506 }
507
508 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
509                             unsigned j, struct bkey_packed *k)
510 {
511         EBUG_ON(k >= btree_bkey_last(b, t));
512
513         rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
514                 .offset = __btree_node_key_to_offset(b, k),
515                 .k      = bkey_unpack_pos(b, k),
516         };
517 }
518
519 static void bch2_bset_verify_rw_aux_tree(struct btree *b,
520                                         struct bset_tree *t)
521 {
522         struct bkey_packed *k = btree_bkey_first(b, t);
523         unsigned j = 0;
524
525         if (!bch2_expensive_debug_checks)
526                 return;
527
528         BUG_ON(bset_has_ro_aux_tree(t));
529
530         if (!bset_has_rw_aux_tree(t))
531                 return;
532
533         BUG_ON(t->size < 1);
534         BUG_ON(rw_aux_to_bkey(b, t, j) != k);
535
536         goto start;
537         while (1) {
538                 if (rw_aux_to_bkey(b, t, j) == k) {
539                         BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k,
540                                         bkey_unpack_pos(b, k)));
541 start:
542                         if (++j == t->size)
543                                 break;
544
545                         BUG_ON(rw_aux_tree(b, t)[j].offset <=
546                                rw_aux_tree(b, t)[j - 1].offset);
547                 }
548
549                 k = bkey_p_next(k);
550                 BUG_ON(k >= btree_bkey_last(b, t));
551         }
552 }
553
554 /* returns idx of first entry >= offset: */
555 static unsigned rw_aux_tree_bsearch(struct btree *b,
556                                     struct bset_tree *t,
557                                     unsigned offset)
558 {
559         unsigned bset_offs = offset - btree_bkey_first_offset(t);
560         unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t);
561         unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0;
562
563         EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
564         EBUG_ON(!t->size);
565         EBUG_ON(idx > t->size);
566
567         while (idx < t->size &&
568                rw_aux_tree(b, t)[idx].offset < offset)
569                 idx++;
570
571         while (idx &&
572                rw_aux_tree(b, t)[idx - 1].offset >= offset)
573                 idx--;
574
575         EBUG_ON(idx < t->size &&
576                 rw_aux_tree(b, t)[idx].offset < offset);
577         EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset);
578         EBUG_ON(idx + 1 < t->size &&
579                 rw_aux_tree(b, t)[idx].offset ==
580                 rw_aux_tree(b, t)[idx + 1].offset);
581
582         return idx;
583 }
584
585 static inline unsigned bkey_mantissa(const struct bkey_packed *k,
586                                      const struct bkey_float *f,
587                                      unsigned idx)
588 {
589         u64 v;
590
591         EBUG_ON(!bkey_packed(k));
592
593         v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
594
595         /*
596          * In little endian, we're shifting off low bits (and then the bits we
597          * want are at the low end), in big endian we're shifting off high bits
598          * (and then the bits we want are at the high end, so we shift them
599          * back down):
600          */
601 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
602         v >>= f->exponent & 7;
603 #else
604         v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS;
605 #endif
606         return (u16) v;
607 }
608
609 static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t,
610                                         unsigned j,
611                                         struct bkey_packed *min_key,
612                                         struct bkey_packed *max_key)
613 {
614         struct bkey_float *f = bkey_float(b, t, j);
615         struct bkey_packed *m = tree_to_bkey(b, t, j);
616         struct bkey_packed *l = is_power_of_2(j)
617                 ? min_key
618                 : tree_to_prev_bkey(b, t, j >> ffs(j));
619         struct bkey_packed *r = is_power_of_2(j + 1)
620                 ? max_key
621                 : tree_to_bkey(b, t, j >> (ffz(j) + 1));
622         unsigned mantissa;
623         int shift, exponent, high_bit;
624
625         /*
626          * for failed bfloats, the lookup code falls back to comparing against
627          * the original key.
628          */
629
630         if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) ||
631             !b->nr_key_bits) {
632                 f->exponent = BFLOAT_FAILED_UNPACKED;
633                 return;
634         }
635
636         /*
637          * The greatest differing bit of l and r is the first bit we must
638          * include in the bfloat mantissa we're creating in order to do
639          * comparisons - that bit always becomes the high bit of
640          * bfloat->mantissa, and thus the exponent we're calculating here is
641          * the position of what will become the low bit in bfloat->mantissa:
642          *
643          * Note that this may be negative - we may be running off the low end
644          * of the key: we handle this later:
645          */
646         high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
647                        min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1);
648         exponent = high_bit - (BKEY_MANTISSA_BITS - 1);
649
650         /*
651          * Then we calculate the actual shift value, from the start of the key
652          * (k->_data), to get the key bits starting at exponent:
653          */
654 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
655         shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
656
657         EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64);
658 #else
659         shift = high_bit_offset +
660                 b->nr_key_bits -
661                 exponent -
662                 BKEY_MANTISSA_BITS;
663
664         EBUG_ON(shift < KEY_PACKED_BITS_START);
665 #endif
666         EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
667
668         f->exponent = shift;
669         mantissa = bkey_mantissa(m, f, j);
670
671         /*
672          * If we've got garbage bits, set them to all 1s - it's legal for the
673          * bfloat to compare larger than the original key, but not smaller:
674          */
675         if (exponent < 0)
676                 mantissa |= ~(~0U << -exponent);
677
678         f->mantissa = mantissa;
679 }
680
681 /* bytes remaining - only valid for last bset: */
682 static unsigned __bset_tree_capacity(const struct btree *b, const struct bset_tree *t)
683 {
684         bset_aux_tree_verify(b);
685
686         return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
687 }
688
689 static unsigned bset_ro_tree_capacity(const struct btree *b, const struct bset_tree *t)
690 {
691         return __bset_tree_capacity(b, t) /
692                 (sizeof(struct bkey_float) + sizeof(u8));
693 }
694
695 static unsigned bset_rw_tree_capacity(const struct btree *b, const struct bset_tree *t)
696 {
697         return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
698 }
699
700 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
701 {
702         struct bkey_packed *k;
703
704         t->size = 1;
705         t->extra = BSET_RW_AUX_TREE_VAL;
706         rw_aux_tree(b, t)[0].offset =
707                 __btree_node_key_to_offset(b, btree_bkey_first(b, t));
708
709         bset_tree_for_each_key(b, t, k) {
710                 if (t->size == bset_rw_tree_capacity(b, t))
711                         break;
712
713                 if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
714                     L1_CACHE_BYTES)
715                         rw_aux_tree_set(b, t, t->size++, k);
716         }
717 }
718
719 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
720 {
721         struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t);
722         struct bkey_i min_key, max_key;
723         unsigned j, cacheline = 1;
724
725         t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
726                       bset_ro_tree_capacity(b, t));
727 retry:
728         if (t->size < 2) {
729                 t->size = 0;
730                 t->extra = BSET_NO_AUX_TREE_VAL;
731                 return;
732         }
733
734         t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
735
736         /* First we figure out where the first key in each cacheline is */
737         eytzinger1_for_each(j, t->size - 1) {
738                 while (bkey_to_cacheline(b, t, k) < cacheline)
739                         prev = k, k = bkey_p_next(k);
740
741                 if (k >= btree_bkey_last(b, t)) {
742                         /* XXX: this path sucks */
743                         t->size--;
744                         goto retry;
745                 }
746
747                 ro_aux_tree_prev(b, t)[j] = prev->u64s;
748                 bkey_float(b, t, j)->key_offset =
749                         bkey_to_cacheline_offset(b, t, cacheline++, k);
750
751                 EBUG_ON(tree_to_prev_bkey(b, t, j) != prev);
752                 EBUG_ON(tree_to_bkey(b, t, j) != k);
753         }
754
755         while (k != btree_bkey_last(b, t))
756                 prev = k, k = bkey_p_next(k);
757
758         if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) {
759                 bkey_init(&min_key.k);
760                 min_key.k.p = b->data->min_key;
761         }
762
763         if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) {
764                 bkey_init(&max_key.k);
765                 max_key.k.p = b->data->max_key;
766         }
767
768         /* Then we build the tree */
769         eytzinger1_for_each(j, t->size - 1)
770                 make_bfloat(b, t, j,
771                             bkey_to_packed(&min_key),
772                             bkey_to_packed(&max_key));
773 }
774
775 static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
776 {
777         struct bset_tree *i;
778
779         for (i = b->set; i != t; i++)
780                 BUG_ON(bset_has_rw_aux_tree(i));
781
782         bch2_bset_set_no_aux_tree(b, t);
783
784         /* round up to next cacheline: */
785         t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
786                                       SMP_CACHE_BYTES / sizeof(u64));
787
788         bset_aux_tree_verify(b);
789 }
790
791 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
792                              bool writeable)
793 {
794         if (writeable
795             ? bset_has_rw_aux_tree(t)
796             : bset_has_ro_aux_tree(t))
797                 return;
798
799         bset_alloc_tree(b, t);
800
801         if (!__bset_tree_capacity(b, t))
802                 return;
803
804         if (writeable)
805                 __build_rw_aux_tree(b, t);
806         else
807                 __build_ro_aux_tree(b, t);
808
809         bset_aux_tree_verify(b);
810 }
811
812 void bch2_bset_init_first(struct btree *b, struct bset *i)
813 {
814         struct bset_tree *t;
815
816         BUG_ON(b->nsets);
817
818         memset(i, 0, sizeof(*i));
819         get_random_bytes(&i->seq, sizeof(i->seq));
820         SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
821
822         t = &b->set[b->nsets++];
823         set_btree_bset(b, t, i);
824 }
825
826 void bch2_bset_init_next(struct bch_fs *c, struct btree *b,
827                          struct btree_node_entry *bne)
828 {
829         struct bset *i = &bne->keys;
830         struct bset_tree *t;
831
832         BUG_ON(bset_byte_offset(b, bne) >= btree_bytes(c));
833         BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
834         BUG_ON(b->nsets >= MAX_BSETS);
835
836         memset(i, 0, sizeof(*i));
837         i->seq = btree_bset_first(b)->seq;
838         SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
839
840         t = &b->set[b->nsets++];
841         set_btree_bset(b, t, i);
842 }
843
844 /*
845  * find _some_ key in the same bset as @k that precedes @k - not necessarily the
846  * immediate predecessor:
847  */
848 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
849                                        struct bkey_packed *k)
850 {
851         struct bkey_packed *p;
852         unsigned offset;
853         int j;
854
855         EBUG_ON(k < btree_bkey_first(b, t) ||
856                 k > btree_bkey_last(b, t));
857
858         if (k == btree_bkey_first(b, t))
859                 return NULL;
860
861         switch (bset_aux_tree_type(t)) {
862         case BSET_NO_AUX_TREE:
863                 p = btree_bkey_first(b, t);
864                 break;
865         case BSET_RO_AUX_TREE:
866                 j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
867
868                 do {
869                         p = j ? tree_to_bkey(b, t,
870                                         __inorder_to_eytzinger1(j--,
871                                                         t->size - 1, t->extra))
872                               : btree_bkey_first(b, t);
873                 } while (p >= k);
874                 break;
875         case BSET_RW_AUX_TREE:
876                 offset = __btree_node_key_to_offset(b, k);
877                 j = rw_aux_tree_bsearch(b, t, offset);
878                 p = j ? rw_aux_to_bkey(b, t, j - 1)
879                       : btree_bkey_first(b, t);
880                 break;
881         }
882
883         return p;
884 }
885
886 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
887                                           struct bset_tree *t,
888                                           struct bkey_packed *k,
889                                           unsigned min_key_type)
890 {
891         struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
892
893         while ((p = __bkey_prev(b, t, k)) && !ret) {
894                 for (i = p; i != k; i = bkey_p_next(i))
895                         if (i->type >= min_key_type)
896                                 ret = i;
897
898                 k = p;
899         }
900
901         if (bch2_expensive_debug_checks) {
902                 BUG_ON(ret >= orig_k);
903
904                 for (i = ret
905                         ? bkey_p_next(ret)
906                         : btree_bkey_first(b, t);
907                      i != orig_k;
908                      i = bkey_p_next(i))
909                         BUG_ON(i->type >= min_key_type);
910         }
911
912         return ret;
913 }
914
915 /* Insert */
916
917 static void bch2_bset_fix_lookup_table(struct btree *b,
918                                        struct bset_tree *t,
919                                        struct bkey_packed *_where,
920                                        unsigned clobber_u64s,
921                                        unsigned new_u64s)
922 {
923         int shift = new_u64s - clobber_u64s;
924         unsigned l, j, where = __btree_node_key_to_offset(b, _where);
925
926         EBUG_ON(bset_has_ro_aux_tree(t));
927
928         if (!bset_has_rw_aux_tree(t))
929                 return;
930
931         /* returns first entry >= where */
932         l = rw_aux_tree_bsearch(b, t, where);
933
934         if (!l) /* never delete first entry */
935                 l++;
936         else if (l < t->size &&
937                  where < t->end_offset &&
938                  rw_aux_tree(b, t)[l].offset == where)
939                 rw_aux_tree_set(b, t, l++, _where);
940
941         /* l now > where */
942
943         for (j = l;
944              j < t->size &&
945              rw_aux_tree(b, t)[j].offset < where + clobber_u64s;
946              j++)
947                 ;
948
949         if (j < t->size &&
950             rw_aux_tree(b, t)[j].offset + shift ==
951             rw_aux_tree(b, t)[l - 1].offset)
952                 j++;
953
954         memmove(&rw_aux_tree(b, t)[l],
955                 &rw_aux_tree(b, t)[j],
956                 (void *) &rw_aux_tree(b, t)[t->size] -
957                 (void *) &rw_aux_tree(b, t)[j]);
958         t->size -= j - l;
959
960         for (j = l; j < t->size; j++)
961                 rw_aux_tree(b, t)[j].offset += shift;
962
963         EBUG_ON(l < t->size &&
964                 rw_aux_tree(b, t)[l].offset ==
965                 rw_aux_tree(b, t)[l - 1].offset);
966
967         if (t->size < bset_rw_tree_capacity(b, t) &&
968             (l < t->size
969              ? rw_aux_tree(b, t)[l].offset
970              : t->end_offset) -
971             rw_aux_tree(b, t)[l - 1].offset >
972             L1_CACHE_BYTES / sizeof(u64)) {
973                 struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1);
974                 struct bkey_packed *end = l < t->size
975                         ? rw_aux_to_bkey(b, t, l)
976                         : btree_bkey_last(b, t);
977                 struct bkey_packed *k = start;
978
979                 while (1) {
980                         k = bkey_p_next(k);
981                         if (k == end)
982                                 break;
983
984                         if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
985                                 memmove(&rw_aux_tree(b, t)[l + 1],
986                                         &rw_aux_tree(b, t)[l],
987                                         (void *) &rw_aux_tree(b, t)[t->size] -
988                                         (void *) &rw_aux_tree(b, t)[l]);
989                                 t->size++;
990                                 rw_aux_tree_set(b, t, l, k);
991                                 break;
992                         }
993                 }
994         }
995
996         bch2_bset_verify_rw_aux_tree(b, t);
997         bset_aux_tree_verify(b);
998 }
999
1000 void bch2_bset_insert(struct btree *b,
1001                       struct btree_node_iter *iter,
1002                       struct bkey_packed *where,
1003                       struct bkey_i *insert,
1004                       unsigned clobber_u64s)
1005 {
1006         struct bkey_format *f = &b->format;
1007         struct bset_tree *t = bset_tree_last(b);
1008         struct bkey_packed packed, *src = bkey_to_packed(insert);
1009
1010         bch2_bset_verify_rw_aux_tree(b, t);
1011         bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s);
1012
1013         if (bch2_bkey_pack_key(&packed, &insert->k, f))
1014                 src = &packed;
1015
1016         if (!bkey_deleted(&insert->k))
1017                 btree_keys_account_key_add(&b->nr, t - b->set, src);
1018
1019         if (src->u64s != clobber_u64s) {
1020                 u64 *src_p = (u64 *) where->_data + clobber_u64s;
1021                 u64 *dst_p = (u64 *) where->_data + src->u64s;
1022
1023                 EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
1024                         (int) clobber_u64s - src->u64s);
1025
1026                 memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1027                 le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
1028                 set_btree_bset_end(b, t);
1029         }
1030
1031         memcpy_u64s_small(where, src,
1032                     bkeyp_key_u64s(f, src));
1033         memcpy_u64s(bkeyp_val(f, where), &insert->v,
1034                     bkeyp_val_u64s(f, src));
1035
1036         if (src->u64s != clobber_u64s)
1037                 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
1038
1039         bch2_verify_btree_nr_keys(b);
1040 }
1041
1042 void bch2_bset_delete(struct btree *b,
1043                       struct bkey_packed *where,
1044                       unsigned clobber_u64s)
1045 {
1046         struct bset_tree *t = bset_tree_last(b);
1047         u64 *src_p = (u64 *) where->_data + clobber_u64s;
1048         u64 *dst_p = where->_data;
1049
1050         bch2_bset_verify_rw_aux_tree(b, t);
1051
1052         EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
1053
1054         memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1055         le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
1056         set_btree_bset_end(b, t);
1057
1058         bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
1059 }
1060
1061 /* Lookup */
1062
1063 __flatten
1064 static struct bkey_packed *bset_search_write_set(const struct btree *b,
1065                                 struct bset_tree *t,
1066                                 struct bpos *search)
1067 {
1068         unsigned l = 0, r = t->size;
1069
1070         while (l + 1 != r) {
1071                 unsigned m = (l + r) >> 1;
1072
1073                 if (bpos_lt(rw_aux_tree(b, t)[m].k, *search))
1074                         l = m;
1075                 else
1076                         r = m;
1077         }
1078
1079         return rw_aux_to_bkey(b, t, l);
1080 }
1081
1082 static inline void prefetch_four_cachelines(void *p)
1083 {
1084 #ifdef CONFIG_X86_64
1085         asm("prefetcht0 (-127 + 64 * 0)(%0);"
1086             "prefetcht0 (-127 + 64 * 1)(%0);"
1087             "prefetcht0 (-127 + 64 * 2)(%0);"
1088             "prefetcht0 (-127 + 64 * 3)(%0);"
1089             :
1090             : "r" (p + 127));
1091 #else
1092         prefetch(p + L1_CACHE_BYTES * 0);
1093         prefetch(p + L1_CACHE_BYTES * 1);
1094         prefetch(p + L1_CACHE_BYTES * 2);
1095         prefetch(p + L1_CACHE_BYTES * 3);
1096 #endif
1097 }
1098
1099 static inline bool bkey_mantissa_bits_dropped(const struct btree *b,
1100                                               const struct bkey_float *f,
1101                                               unsigned idx)
1102 {
1103 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1104         unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits;
1105
1106         return f->exponent > key_bits_start;
1107 #else
1108         unsigned key_bits_end = high_bit_offset + b->nr_key_bits;
1109
1110         return f->exponent + BKEY_MANTISSA_BITS < key_bits_end;
1111 #endif
1112 }
1113
1114 __flatten
1115 static struct bkey_packed *bset_search_tree(const struct btree *b,
1116                                 const struct bset_tree *t,
1117                                 const struct bpos *search,
1118                                 const struct bkey_packed *packed_search)
1119 {
1120         struct ro_aux_tree *base = ro_aux_tree_base(b, t);
1121         struct bkey_float *f;
1122         struct bkey_packed *k;
1123         unsigned inorder, n = 1, l, r;
1124         int cmp;
1125
1126         do {
1127                 if (likely(n << 4 < t->size))
1128                         prefetch(&base->f[n << 4]);
1129
1130                 f = &base->f[n];
1131                 if (unlikely(f->exponent >= BFLOAT_FAILED))
1132                         goto slowpath;
1133
1134                 l = f->mantissa;
1135                 r = bkey_mantissa(packed_search, f, n);
1136
1137                 if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n))
1138                         goto slowpath;
1139
1140                 n = n * 2 + (l < r);
1141                 continue;
1142 slowpath:
1143                 k = tree_to_bkey(b, t, n);
1144                 cmp = bkey_cmp_p_or_unp(b, k, packed_search, search);
1145                 if (!cmp)
1146                         return k;
1147
1148                 n = n * 2 + (cmp < 0);
1149         } while (n < t->size);
1150
1151         inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra);
1152
1153         /*
1154          * n would have been the node we recursed to - the low bit tells us if
1155          * we recursed left or recursed right.
1156          */
1157         if (likely(!(n & 1))) {
1158                 --inorder;
1159                 if (unlikely(!inorder))
1160                         return btree_bkey_first(b, t);
1161
1162                 f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)];
1163         }
1164
1165         return cacheline_to_bkey(b, t, inorder, f->key_offset);
1166 }
1167
1168 static __always_inline __flatten
1169 struct bkey_packed *__bch2_bset_search(struct btree *b,
1170                                 struct bset_tree *t,
1171                                 struct bpos *search,
1172                                 const struct bkey_packed *lossy_packed_search)
1173 {
1174
1175         /*
1176          * First, we search for a cacheline, then lastly we do a linear search
1177          * within that cacheline.
1178          *
1179          * To search for the cacheline, there's three different possibilities:
1180          *  * The set is too small to have a search tree, so we just do a linear
1181          *    search over the whole set.
1182          *  * The set is the one we're currently inserting into; keeping a full
1183          *    auxiliary search tree up to date would be too expensive, so we
1184          *    use a much simpler lookup table to do a binary search -
1185          *    bset_search_write_set().
1186          *  * Or we use the auxiliary search tree we constructed earlier -
1187          *    bset_search_tree()
1188          */
1189
1190         switch (bset_aux_tree_type(t)) {
1191         case BSET_NO_AUX_TREE:
1192                 return btree_bkey_first(b, t);
1193         case BSET_RW_AUX_TREE:
1194                 return bset_search_write_set(b, t, search);
1195         case BSET_RO_AUX_TREE:
1196                 return bset_search_tree(b, t, search, lossy_packed_search);
1197         default:
1198                 BUG();
1199         }
1200 }
1201
1202 static __always_inline __flatten
1203 struct bkey_packed *bch2_bset_search_linear(struct btree *b,
1204                                 struct bset_tree *t,
1205                                 struct bpos *search,
1206                                 struct bkey_packed *packed_search,
1207                                 const struct bkey_packed *lossy_packed_search,
1208                                 struct bkey_packed *m)
1209 {
1210         if (lossy_packed_search)
1211                 while (m != btree_bkey_last(b, t) &&
1212                        bkey_iter_cmp_p_or_unp(b, m,
1213                                         lossy_packed_search, search) < 0)
1214                         m = bkey_p_next(m);
1215
1216         if (!packed_search)
1217                 while (m != btree_bkey_last(b, t) &&
1218                        bkey_iter_pos_cmp(b, m, search) < 0)
1219                         m = bkey_p_next(m);
1220
1221         if (bch2_expensive_debug_checks) {
1222                 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1223
1224                 BUG_ON(prev &&
1225                        bkey_iter_cmp_p_or_unp(b, prev,
1226                                         packed_search, search) >= 0);
1227         }
1228
1229         return m;
1230 }
1231
1232 /* Btree node iterator */
1233
1234 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter,
1235                               struct btree *b,
1236                               const struct bkey_packed *k,
1237                               const struct bkey_packed *end)
1238 {
1239         if (k != end) {
1240                 struct btree_node_iter_set *pos;
1241
1242                 btree_node_iter_for_each(iter, pos)
1243                         ;
1244
1245                 BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data));
1246                 *pos = (struct btree_node_iter_set) {
1247                         __btree_node_key_to_offset(b, k),
1248                         __btree_node_key_to_offset(b, end)
1249                 };
1250         }
1251 }
1252
1253 void bch2_btree_node_iter_push(struct btree_node_iter *iter,
1254                                struct btree *b,
1255                                const struct bkey_packed *k,
1256                                const struct bkey_packed *end)
1257 {
1258         __bch2_btree_node_iter_push(iter, b, k, end);
1259         bch2_btree_node_iter_sort(iter, b);
1260 }
1261
1262 noinline __flatten __cold
1263 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
1264                               struct btree *b, struct bpos *search)
1265 {
1266         struct bkey_packed *k;
1267
1268         trace_bkey_pack_pos_fail(search);
1269
1270         bch2_btree_node_iter_init_from_start(iter, b);
1271
1272         while ((k = bch2_btree_node_iter_peek(iter, b)) &&
1273                bkey_iter_pos_cmp(b, k, search) < 0)
1274                 bch2_btree_node_iter_advance(iter, b);
1275 }
1276
1277 /**
1278  * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a
1279  * given position
1280  *
1281  * @iter:       iterator to initialize
1282  * @b:          btree node to search
1283  * @search:     search key
1284  *
1285  * Main entry point to the lookup code for individual btree nodes:
1286  *
1287  * NOTE:
1288  *
1289  * When you don't filter out deleted keys, btree nodes _do_ contain duplicate
1290  * keys. This doesn't matter for most code, but it does matter for lookups.
1291  *
1292  * Some adjacent keys with a string of equal keys:
1293  *      i j k k k k l m
1294  *
1295  * If you search for k, the lookup code isn't guaranteed to return you any
1296  * specific k. The lookup code is conceptually doing a binary search and
1297  * iterating backwards is very expensive so if the pivot happens to land at the
1298  * last k that's what you'll get.
1299  *
1300  * This works out ok, but it's something to be aware of:
1301  *
1302  *  - For non extents, we guarantee that the live key comes last - see
1303  *    btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
1304  *    see will only be deleted keys you don't care about.
1305  *
1306  *  - For extents, deleted keys sort last (see the comment at the top of this
1307  *    file). But when you're searching for extents, you actually want the first
1308  *    key strictly greater than your search key - an extent that compares equal
1309  *    to the search key is going to have 0 sectors after the search key.
1310  *
1311  *    But this does mean that we can't just search for
1312  *    bpos_successor(start_of_range) to get the first extent that overlaps with
1313  *    the range we want - if we're unlucky and there's an extent that ends
1314  *    exactly where we searched, then there could be a deleted key at the same
1315  *    position and we'd get that when we search instead of the preceding extent
1316  *    we needed.
1317  *
1318  *    So we've got to search for start_of_range, then after the lookup iterate
1319  *    past any extents that compare equal to the position we searched for.
1320  */
1321 __flatten
1322 void bch2_btree_node_iter_init(struct btree_node_iter *iter,
1323                                struct btree *b, struct bpos *search)
1324 {
1325         struct bkey_packed p, *packed_search = NULL;
1326         struct btree_node_iter_set *pos = iter->data;
1327         struct bkey_packed *k[MAX_BSETS];
1328         unsigned i;
1329
1330         EBUG_ON(bpos_lt(*search, b->data->min_key));
1331         EBUG_ON(bpos_gt(*search, b->data->max_key));
1332         bset_aux_tree_verify(b);
1333
1334         memset(iter, 0, sizeof(*iter));
1335
1336         switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) {
1337         case BKEY_PACK_POS_EXACT:
1338                 packed_search = &p;
1339                 break;
1340         case BKEY_PACK_POS_SMALLER:
1341                 packed_search = NULL;
1342                 break;
1343         case BKEY_PACK_POS_FAIL:
1344                 btree_node_iter_init_pack_failed(iter, b, search);
1345                 return;
1346         }
1347
1348         for (i = 0; i < b->nsets; i++) {
1349                 k[i] = __bch2_bset_search(b, b->set + i, search, &p);
1350                 prefetch_four_cachelines(k[i]);
1351         }
1352
1353         for (i = 0; i < b->nsets; i++) {
1354                 struct bset_tree *t = b->set + i;
1355                 struct bkey_packed *end = btree_bkey_last(b, t);
1356
1357                 k[i] = bch2_bset_search_linear(b, t, search,
1358                                                packed_search, &p, k[i]);
1359                 if (k[i] != end)
1360                         *pos++ = (struct btree_node_iter_set) {
1361                                 __btree_node_key_to_offset(b, k[i]),
1362                                 __btree_node_key_to_offset(b, end)
1363                         };
1364         }
1365
1366         bch2_btree_node_iter_sort(iter, b);
1367 }
1368
1369 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
1370                                           struct btree *b)
1371 {
1372         struct bset_tree *t;
1373
1374         memset(iter, 0, sizeof(*iter));
1375
1376         for_each_bset(b, t)
1377                 __bch2_btree_node_iter_push(iter, b,
1378                                            btree_bkey_first(b, t),
1379                                            btree_bkey_last(b, t));
1380         bch2_btree_node_iter_sort(iter, b);
1381 }
1382
1383 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
1384                                                   struct btree *b,
1385                                                   struct bset_tree *t)
1386 {
1387         struct btree_node_iter_set *set;
1388
1389         btree_node_iter_for_each(iter, set)
1390                 if (set->end == t->end_offset)
1391                         return __btree_node_offset_to_key(b, set->k);
1392
1393         return btree_bkey_last(b, t);
1394 }
1395
1396 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
1397                                             struct btree *b,
1398                                             unsigned first)
1399 {
1400         bool ret;
1401
1402         if ((ret = (btree_node_iter_cmp(b,
1403                                         iter->data[first],
1404                                         iter->data[first + 1]) > 0)))
1405                 swap(iter->data[first], iter->data[first + 1]);
1406         return ret;
1407 }
1408
1409 void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
1410                                struct btree *b)
1411 {
1412         /* unrolled bubble sort: */
1413
1414         if (!__btree_node_iter_set_end(iter, 2)) {
1415                 btree_node_iter_sort_two(iter, b, 0);
1416                 btree_node_iter_sort_two(iter, b, 1);
1417         }
1418
1419         if (!__btree_node_iter_set_end(iter, 1))
1420                 btree_node_iter_sort_two(iter, b, 0);
1421 }
1422
1423 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
1424                                    struct btree_node_iter_set *set)
1425 {
1426         struct btree_node_iter_set *last =
1427                 iter->data + ARRAY_SIZE(iter->data) - 1;
1428
1429         memmove(&set[0], &set[1], (void *) last - (void *) set);
1430         *last = (struct btree_node_iter_set) { 0, 0 };
1431 }
1432
1433 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1434                                                   struct btree *b)
1435 {
1436         iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
1437
1438         EBUG_ON(iter->data->k > iter->data->end);
1439
1440         if (unlikely(__btree_node_iter_set_end(iter, 0))) {
1441                 /* avoid an expensive memmove call: */
1442                 iter->data[0] = iter->data[1];
1443                 iter->data[1] = iter->data[2];
1444                 iter->data[2] = (struct btree_node_iter_set) { 0, 0 };
1445                 return;
1446         }
1447
1448         if (__btree_node_iter_set_end(iter, 1))
1449                 return;
1450
1451         if (!btree_node_iter_sort_two(iter, b, 0))
1452                 return;
1453
1454         if (__btree_node_iter_set_end(iter, 2))
1455                 return;
1456
1457         btree_node_iter_sort_two(iter, b, 1);
1458 }
1459
1460 void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1461                                   struct btree *b)
1462 {
1463         if (bch2_expensive_debug_checks) {
1464                 bch2_btree_node_iter_verify(iter, b);
1465                 bch2_btree_node_iter_next_check(iter, b);
1466         }
1467
1468         __bch2_btree_node_iter_advance(iter, b);
1469 }
1470
1471 /*
1472  * Expensive:
1473  */
1474 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter,
1475                                                   struct btree *b)
1476 {
1477         struct bkey_packed *k, *prev = NULL;
1478         struct btree_node_iter_set *set;
1479         struct bset_tree *t;
1480         unsigned end = 0;
1481
1482         if (bch2_expensive_debug_checks)
1483                 bch2_btree_node_iter_verify(iter, b);
1484
1485         for_each_bset(b, t) {
1486                 k = bch2_bkey_prev_all(b, t,
1487                         bch2_btree_node_iter_bset_pos(iter, b, t));
1488                 if (k &&
1489                     (!prev || bkey_iter_cmp(b, k, prev) > 0)) {
1490                         prev = k;
1491                         end = t->end_offset;
1492                 }
1493         }
1494
1495         if (!prev)
1496                 return NULL;
1497
1498         /*
1499          * We're manually memmoving instead of just calling sort() to ensure the
1500          * prev we picked ends up in slot 0 - sort won't necessarily put it
1501          * there because of duplicate deleted keys:
1502          */
1503         btree_node_iter_for_each(iter, set)
1504                 if (set->end == end)
1505                         goto found;
1506
1507         BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
1508 found:
1509         BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
1510
1511         memmove(&iter->data[1],
1512                 &iter->data[0],
1513                 (void *) set - (void *) &iter->data[0]);
1514
1515         iter->data[0].k = __btree_node_key_to_offset(b, prev);
1516         iter->data[0].end = end;
1517
1518         if (bch2_expensive_debug_checks)
1519                 bch2_btree_node_iter_verify(iter, b);
1520         return prev;
1521 }
1522
1523 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter,
1524                                               struct btree *b)
1525 {
1526         struct bkey_packed *prev;
1527
1528         do {
1529                 prev = bch2_btree_node_iter_prev_all(iter, b);
1530         } while (prev && bkey_deleted(prev));
1531
1532         return prev;
1533 }
1534
1535 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
1536                                                  struct btree *b,
1537                                                  struct bkey *u)
1538 {
1539         struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
1540
1541         return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
1542 }
1543
1544 /* Mergesort */
1545
1546 void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats)
1547 {
1548         const struct bset_tree *t;
1549
1550         for_each_bset(b, t) {
1551                 enum bset_aux_tree_type type = bset_aux_tree_type(t);
1552                 size_t j;
1553
1554                 stats->sets[type].nr++;
1555                 stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
1556                         sizeof(u64);
1557
1558                 if (bset_has_ro_aux_tree(t)) {
1559                         stats->floats += t->size - 1;
1560
1561                         for (j = 1; j < t->size; j++)
1562                                 stats->failed +=
1563                                         bkey_float(b, t, j)->exponent ==
1564                                         BFLOAT_FAILED;
1565                 }
1566         }
1567 }
1568
1569 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b,
1570                          struct bkey_packed *k)
1571 {
1572         struct bset_tree *t = bch2_bkey_to_bset(b, k);
1573         struct bkey uk;
1574         unsigned j, inorder;
1575
1576         if (!bset_has_ro_aux_tree(t))
1577                 return;
1578
1579         inorder = bkey_to_cacheline(b, t, k);
1580         if (!inorder || inorder >= t->size)
1581                 return;
1582
1583         j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra);
1584         if (k != tree_to_bkey(b, t, j))
1585                 return;
1586
1587         switch (bkey_float(b, t, j)->exponent) {
1588         case BFLOAT_FAILED:
1589                 uk = bkey_unpack_key(b, k);
1590                 prt_printf(out,
1591                        "    failed unpacked at depth %u\n"
1592                        "\t",
1593                        ilog2(j));
1594                 bch2_bpos_to_text(out, uk.p);
1595                 prt_printf(out, "\n");
1596                 break;
1597         }
1598 }