]> git.sesse.net Git - nageru/blob - nageru/mixer.cpp
26296180ac1371a0f14486849d451639d7a3d092
[nageru] / nageru / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect.h>
8 #include <movit/effect_chain.h>
9 #include <movit/effect_util.h>
10 #include <movit/flat_input.h>
11 #include <movit/image_format.h>
12 #include <movit/init.h>
13 #include <movit/resource_pool.h>
14 #include <pthread.h>
15 #include <stdint.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <algorithm>
19 #include <chrono>
20 #include <condition_variable>
21 #include <cstddef>
22 #include <cstdint>
23 #include <memory>
24 #include <mutex>
25 #include <ratio>
26 #include <string>
27 #include <thread>
28 #include <utility>
29 #include <vector>
30
31 #include "DeckLinkAPI.h"
32 #include "LinuxCOM.h"
33 #include "alsa_output.h"
34 #include "basic_stats.h"
35 #include "bmusb/bmusb.h"
36 #include "bmusb/fake_capture.h"
37 #ifdef HAVE_CEF
38 #include "cef_capture.h"
39 #endif
40 #include "chroma_subsampler.h"
41 #include "shared/context.h"
42 #include "decklink_capture.h"
43 #include "decklink_output.h"
44 #include "defs.h"
45 #include "shared/disk_space_estimator.h"
46 #include "ffmpeg_capture.h"
47 #include "flags.h"
48 #include "image_input.h"
49 #include "input_mapping.h"
50 #include "shared/metrics.h"
51 #include "shared/va_display.h"
52 #include "mjpeg_encoder.h"
53 #include "pbo_frame_allocator.h"
54 #include "shared/ref_counted_gl_sync.h"
55 #include "resampling_queue.h"
56 #include "shared/timebase.h"
57 #include "timecode_renderer.h"
58 #include "v210_converter.h"
59 #include "video_encoder.h"
60
61 #undef Status
62 #include <google/protobuf/util/json_util.h>
63 #include "json.pb.h"
64
65 #ifdef HAVE_SRT
66 // Must come after CEF, since it includes <syslog.h>, which has #defines
67 // that conflict with CEF logging constants.
68 #include <srt/srt.h>
69 #endif
70
71 class IDeckLink;
72 class QOpenGLContext;
73
74 using namespace movit;
75 using namespace std;
76 using namespace std::chrono;
77 using namespace std::placeholders;
78 using namespace bmusb;
79
80 Mixer *global_mixer = nullptr;
81
82 namespace {
83
84 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
85 {
86         if (interlaced) {
87                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
88                         input_state->buffered_frames[card_index][frame_num] =
89                                 input_state->buffered_frames[card_index][frame_num - 1];
90                 }
91                 input_state->buffered_frames[card_index][0] = { frame, field_num };
92         } else {
93                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
94                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
95                 }
96         }
97 }
98
99 void ensure_texture_resolution(PBOFrameAllocator::Userdata *userdata, unsigned field, unsigned width, unsigned height, unsigned cbcr_width, unsigned cbcr_height, unsigned v210_width)
100 {
101         bool first;
102         switch (userdata->pixel_format) {
103         case PixelFormat_10BitYCbCr:
104                 first = userdata->tex_v210[field] == 0 || userdata->tex_444[field] == 0;
105                 break;
106         case PixelFormat_8BitYCbCr:
107                 first = userdata->tex_y[field] == 0 || userdata->tex_cbcr[field] == 0;
108                 break;
109         case PixelFormat_8BitBGRA:
110                 first = userdata->tex_rgba[field] == 0;
111                 break;
112         case PixelFormat_8BitYCbCrPlanar:
113                 first = userdata->tex_y[field] == 0 || userdata->tex_cb[field] == 0 || userdata->tex_cr[field] == 0;
114                 break;
115         default:
116                 assert(false);
117         }
118
119         const bool recreate_main_texture =
120                 first ||
121                 width != userdata->last_width[field] ||
122                 height != userdata->last_height[field] ||
123                 cbcr_width != userdata->last_cbcr_width[field] ||
124                 cbcr_height != userdata->last_cbcr_height[field];
125         const bool recreate_v210_texture =
126                 global_flags.ten_bit_input &&
127                 (first || v210_width != userdata->last_v210_width[field] || height != userdata->last_height[field]);
128
129         if (recreate_main_texture) {
130                 // We changed resolution since last use of this texture, so we need to create
131                 // a new object. Note that this each card has its own PBOFrameAllocator,
132                 // we don't need to worry about these flip-flopping between resolutions.
133                 switch (userdata->pixel_format) {
134                 case PixelFormat_10BitYCbCr:
135                         glBindTexture(GL_TEXTURE_2D, userdata->tex_444[field]);
136                         check_error();
137                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB10_A2, width, height, 0, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, nullptr);
138                         check_error();
139                         break;
140                 case PixelFormat_8BitYCbCr: {
141                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
142                         check_error();
143                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
144                         check_error();
145                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
146                         check_error();
147                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, width, height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
148                         check_error();
149                         break;
150                 }
151                 case PixelFormat_8BitYCbCrPlanar: {
152                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
153                         check_error();
154                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, width, height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
155                         check_error();
156                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cb[field]);
157                         check_error();
158                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, cbcr_width, cbcr_height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
159                         check_error();
160                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cr[field]);
161                         check_error();
162                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, cbcr_width, cbcr_height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
163                         check_error();
164                         break;
165                 }
166                 case PixelFormat_8BitBGRA:
167                         glBindTexture(GL_TEXTURE_2D, userdata->tex_rgba[field]);
168                         check_error();
169                         // NOTE: sRGB may be disabled by sRGBSwitchingFlatInput.
170                         glTexImage2D(GL_TEXTURE_2D, 0, GL_SRGB8_ALPHA8, width, height, 0, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, nullptr);
171                         check_error();
172                         break;
173                 default:
174                         assert(false);
175                 }
176                 userdata->last_width[field] = width;
177                 userdata->last_height[field] = height;
178                 userdata->last_cbcr_width[field] = cbcr_width;
179                 userdata->last_cbcr_height[field] = cbcr_height;
180         }
181         if (recreate_v210_texture) {
182                 // Same as above; we need to recreate the texture.
183                 glBindTexture(GL_TEXTURE_2D, userdata->tex_v210[field]);
184                 check_error();
185                 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB10_A2, v210_width, height, 0, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, nullptr);
186                 check_error();
187                 userdata->last_v210_width[field] = v210_width;
188                 userdata->last_height[field] = height;
189         }
190 }
191
192 void upload_texture(GLuint tex, GLuint width, GLuint height, GLuint stride, bool interlaced_stride, GLenum format, GLenum type, GLintptr offset)
193 {
194         if (interlaced_stride) {
195                 stride *= 2;
196         }
197         if (global_flags.flush_pbos) {
198                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, offset, stride * height);
199                 check_error();
200         }
201
202         glBindTexture(GL_TEXTURE_2D, tex);
203         check_error();
204         if (interlaced_stride) {
205                 glPixelStorei(GL_UNPACK_ROW_LENGTH, width * 2);
206                 check_error();
207         } else {
208                 glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
209                 check_error();
210         }
211
212         glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, type, BUFFER_OFFSET(offset));
213         check_error();
214         glBindTexture(GL_TEXTURE_2D, 0);
215         check_error();
216         glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
217         check_error();
218 }
219
220 }  // namespace
221
222 void JitterHistory::register_metrics(const vector<pair<string, string>> &labels)
223 {
224         global_metrics.add("input_underestimated_jitter_frames", labels, &metric_input_underestimated_jitter_frames);
225         global_metrics.add("input_estimated_max_jitter_seconds", labels, &metric_input_estimated_max_jitter_seconds, Metrics::TYPE_GAUGE);
226 }
227
228 void JitterHistory::unregister_metrics(const vector<pair<string, string>> &labels)
229 {
230         global_metrics.remove("input_underestimated_jitter_frames", labels);
231         global_metrics.remove("input_estimated_max_jitter_seconds", labels);
232 }
233
234 void JitterHistory::frame_arrived(steady_clock::time_point now, int64_t frame_duration, size_t dropped_frames)
235 {
236         if (expected_timestamp > steady_clock::time_point::min()) {
237                 expected_timestamp += dropped_frames * nanoseconds(frame_duration * 1000000000 / TIMEBASE);
238                 double jitter_seconds = fabs(duration<double>(expected_timestamp - now).count());
239                 history.push_back(orders.insert(jitter_seconds));
240                 if (jitter_seconds > estimate_max_jitter()) {
241                         ++metric_input_underestimated_jitter_frames;
242                 }
243
244                 metric_input_estimated_max_jitter_seconds = estimate_max_jitter();
245
246                 if (history.size() > history_length) {
247                         orders.erase(history.front());
248                         history.pop_front();
249                 }
250                 assert(history.size() <= history_length);
251         }
252         expected_timestamp = now + nanoseconds(frame_duration * 1000000000 / TIMEBASE);
253 }
254
255 double JitterHistory::estimate_max_jitter() const
256 {
257         if (orders.empty()) {
258                 return 0.0;
259         }
260         size_t elem_idx = lrint((orders.size() - 1) * percentile);
261         if (percentile <= 0.5) {
262                 return *next(orders.begin(), elem_idx) * multiplier;
263         } else {
264                 return *prev(orders.end(), orders.size() - elem_idx) * multiplier;
265         }
266 }
267
268 void QueueLengthPolicy::register_metrics(const vector<pair<string, string>> &labels)
269 {
270         global_metrics.add("input_queue_safe_length_frames", labels, &metric_input_queue_safe_length_frames, Metrics::TYPE_GAUGE);
271 }
272
273 void QueueLengthPolicy::unregister_metrics(const vector<pair<string, string>> &labels)
274 {
275         global_metrics.remove("input_queue_safe_length_frames", labels);
276 }
277
278 void QueueLengthPolicy::update_policy(steady_clock::time_point now,
279                                       steady_clock::time_point expected_next_frame,
280                                       int64_t input_frame_duration,
281                                       int64_t master_frame_duration,
282                                       double max_input_card_jitter_seconds,
283                                       double max_master_card_jitter_seconds)
284 {
285         double input_frame_duration_seconds = input_frame_duration / double(TIMEBASE);
286         double master_frame_duration_seconds = master_frame_duration / double(TIMEBASE);
287
288         // Figure out when we can expect the next frame for this card, assuming
289         // worst-case jitter (ie., the frame is maximally late).
290         double seconds_until_next_frame = max(duration<double>(expected_next_frame - now).count() + max_input_card_jitter_seconds, 0.0);
291
292         // How many times are the master card expected to tick in that time?
293         // We assume the master clock has worst-case jitter but not any rate
294         // discrepancy, ie., it ticks as early as possible every time, but not
295         // cumulatively.
296         double frames_needed = (seconds_until_next_frame + max_master_card_jitter_seconds) / master_frame_duration_seconds;
297
298         // As a special case, if the master card ticks faster than the input card,
299         // we expect the queue to drain by itself even without dropping. But if
300         // the difference is small (e.g. 60 Hz master and 59.94 input), it would
301         // go slowly enough that the effect wouldn't really be appreciable.
302         // We account for this by looking at the situation five frames ahead,
303         // assuming everything else is the same.
304         double frames_allowed;
305         if (master_frame_duration < input_frame_duration) {
306                 frames_allowed = frames_needed + 5 * (input_frame_duration_seconds - master_frame_duration_seconds) / master_frame_duration_seconds;
307         } else {
308                 frames_allowed = frames_needed;
309         }
310
311         safe_queue_length = max<int>(floor(frames_allowed), 0);
312         metric_input_queue_safe_length_frames = safe_queue_length;
313 }
314
315 Mixer::Mixer(const QSurfaceFormat &format)
316         : httpd(),
317           mixer_surface(create_surface(format)),
318           h264_encoder_surface(create_surface(format)),
319           decklink_output_surface(create_surface(format)),
320           image_update_surface(create_surface(format))
321 {
322         memcpy(ycbcr_interpretation, global_flags.ycbcr_interpretation, sizeof(ycbcr_interpretation));
323         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
324         check_error();
325
326         if (!epoxy_has_gl_extension("GL_EXT_texture_sRGB_decode") ||
327             !epoxy_has_gl_extension("GL_ARB_sampler_objects")) {
328                 fprintf(stderr, "Nageru requires GL_EXT_texture_sRGB_decode and GL_ARB_sampler_objects to run.\n");
329                 exit(1);
330         }
331
332         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
333         // will be halved when sampling them, and we need to compensate here.
334         movit_texel_subpixel_precision /= 2.0;
335
336         resource_pool.reset(new ResourcePool);
337         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
338                 output_channel[i].parent = this;
339                 output_channel[i].channel = i;
340         }
341
342         ImageFormat inout_format;
343         inout_format.color_space = COLORSPACE_sRGB;
344         inout_format.gamma_curve = GAMMA_sRGB;
345
346         // Matches the 4:2:0 format created by the main chain.
347         YCbCrFormat ycbcr_format;
348         ycbcr_format.chroma_subsampling_x = 2;
349         ycbcr_format.chroma_subsampling_y = 2;
350         if (global_flags.ycbcr_rec709_coefficients) {
351                 ycbcr_format.luma_coefficients = YCBCR_REC_709;
352         } else {
353                 ycbcr_format.luma_coefficients = YCBCR_REC_601;
354         }
355         ycbcr_format.full_range = false;
356         ycbcr_format.num_levels = 1 << global_flags.x264_bit_depth;
357         ycbcr_format.cb_x_position = 0.0f;
358         ycbcr_format.cr_x_position = 0.0f;
359         ycbcr_format.cb_y_position = 0.5f;
360         ycbcr_format.cr_y_position = 0.5f;
361
362         // Initialize the neutral colors to sane values.
363         for (unsigned i = 0; i < MAX_VIDEO_CARDS; ++i) {
364                 last_received_neutral_color[i] = RGBTriplet(1.0f, 1.0f, 1.0f);
365         }
366
367         // Display chain; shows the live output produced by the main chain (or rather, a copy of it).
368         display_chain.reset(new EffectChain(global_flags.width, global_flags.height, resource_pool.get()));
369         check_error();
370         GLenum type = global_flags.x264_bit_depth > 8 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE;
371         display_input = new YCbCrInput(inout_format, ycbcr_format, global_flags.width, global_flags.height, YCBCR_INPUT_SPLIT_Y_AND_CBCR, type);
372         display_chain->add_input(display_input);
373         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
374         display_chain->set_dither_bits(0);  // Don't bother.
375         display_chain->finalize();
376
377         video_encoder.reset(new VideoEncoder(resource_pool.get(), h264_encoder_surface, global_flags.va_display, global_flags.width, global_flags.height, &httpd, global_disk_space_estimator));
378         if (!global_flags.card_to_mjpeg_stream_export.empty()) {
379                 mjpeg_encoder.reset(new MJPEGEncoder(&httpd, global_flags.va_display));
380         }
381
382         // Must be instantiated after VideoEncoder has initialized global_flags.use_zerocopy.
383         theme.reset(new Theme(global_flags.theme_filename, global_flags.theme_dirs, resource_pool.get()));
384
385         // Must be instantiated after the theme, as the theme decides the number of FFmpeg inputs.
386         std::vector<FFmpegCapture *> video_inputs = theme->get_video_inputs();
387         audio_mixer.reset(new AudioMixer);
388
389         httpd.add_endpoint("/channels", bind(&Mixer::get_channels_json, this), HTTPD::ALLOW_ALL_ORIGINS);
390         for (int channel_idx = 0; channel_idx < theme->get_num_channels(); ++channel_idx) {
391                 char url[256];
392                 snprintf(url, sizeof(url), "/channels/%d/color", channel_idx + 2);
393                 httpd.add_endpoint(url, bind(&Mixer::get_channel_color_http, this, unsigned(channel_idx + 2)), HTTPD::ALLOW_ALL_ORIGINS);
394         }
395
396         // Start listening for clients only once VideoEncoder has written its header, if any.
397         httpd.start(global_flags.http_port);
398
399         // First try initializing the then PCI devices, then USB, then
400         // fill up with fake cards until we have the desired number of cards.
401         unsigned num_pci_devices = 0;
402         unsigned card_index = 0;
403
404         {
405                 IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
406                 if (decklink_iterator != nullptr) {
407                         for ( ; card_index < unsigned(global_flags.max_num_cards); ++card_index) {
408                                 IDeckLink *decklink;
409                                 if (decklink_iterator->Next(&decklink) != S_OK) {
410                                         break;
411                                 }
412
413                                 DeckLinkCapture *capture = new DeckLinkCapture(decklink, card_index);
414                                 DeckLinkOutput *output = new DeckLinkOutput(resource_pool.get(), decklink_output_surface, global_flags.width, global_flags.height, card_index);
415                                 if (!output->set_device(decklink)) {
416                                         delete output;
417                                         output = nullptr;
418                                 }
419                                 configure_card(card_index, capture, CardType::LIVE_CARD, output, /*is_srt_card=*/false);
420                                 ++num_pci_devices;
421                         }
422                         decklink_iterator->Release();
423                         fprintf(stderr, "Found %u DeckLink PCI card(s).\n", num_pci_devices);
424                 } else {
425                         fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
426                 }
427         }
428
429         unsigned num_usb_devices = BMUSBCapture::num_cards();
430         for (unsigned usb_card_index = 0; usb_card_index < num_usb_devices && card_index < unsigned(global_flags.max_num_cards); ++usb_card_index, ++card_index) {
431                 BMUSBCapture *capture = new BMUSBCapture(usb_card_index);
432                 capture->set_card_disconnected_callback(bind(&Mixer::bm_hotplug_remove, this, card_index));
433                 configure_card(card_index, capture, CardType::LIVE_CARD, /*output=*/nullptr, /*is_srt_card=*/false);
434         }
435         fprintf(stderr, "Found %u USB card(s).\n", num_usb_devices);
436
437         // Fill up with fake cards for as long as we can, so that the FFmpeg
438         // and HTML cards always come last.
439         unsigned num_fake_cards = 0;
440 #ifdef HAVE_CEF
441         size_t num_html_inputs = theme->get_html_inputs().size();
442 #else
443         size_t num_html_inputs = 0;
444 #endif
445         for ( ; card_index < MAX_VIDEO_CARDS - video_inputs.size() - num_html_inputs; ++card_index) {
446                 // Only bother to activate fake capture cards to satisfy the minimum.
447                 bool is_active = card_index < unsigned(global_flags.min_num_cards) || cards[card_index].force_active;
448                 if (is_active) {
449                         FakeCapture *capture = new FakeCapture(global_flags.width, global_flags.height, FAKE_FPS, OUTPUT_FREQUENCY, card_index, global_flags.fake_cards_audio);
450                         configure_card(card_index, capture, CardType::FAKE_CAPTURE, /*output=*/nullptr, /*is_srt_card=*/false);
451                         ++num_fake_cards;
452                 } else {
453                         configure_card(card_index, nullptr, CardType::FAKE_CAPTURE, /*output=*/nullptr, /*is_srt_card=*/false);
454                 }
455         }
456
457         if (num_fake_cards > 0) {
458                 fprintf(stderr, "Initialized %u fake cards.\n", num_fake_cards);
459         }
460
461         // Initialize all video inputs the theme asked for.
462         for (unsigned video_card_index = 0; video_card_index < video_inputs.size(); ++card_index, ++video_card_index) {
463                 if (card_index >= MAX_VIDEO_CARDS) {
464                         fprintf(stderr, "ERROR: Not enough card slots available for the videos the theme requested.\n");
465                         abort();
466                 }
467                 configure_card(card_index, video_inputs[video_card_index], CardType::FFMPEG_INPUT, /*output=*/nullptr, /*is_srt_card=*/false);
468                 video_inputs[video_card_index]->set_card_index(card_index);
469         }
470         num_video_inputs = video_inputs.size();
471
472 #ifdef HAVE_CEF
473         // Same, for HTML inputs.
474         std::vector<CEFCapture *> html_inputs = theme->get_html_inputs();
475         for (unsigned html_card_index = 0; html_card_index < html_inputs.size(); ++card_index, ++html_card_index) {
476                 if (card_index >= MAX_VIDEO_CARDS) {
477                         fprintf(stderr, "ERROR: Not enough card slots available for the HTML inputs the theme requested.\n");
478                         abort();
479                 }
480                 configure_card(card_index, html_inputs[html_card_index], CardType::CEF_INPUT, /*output=*/nullptr, /*is_srt_card=*/false);
481                 html_inputs[html_card_index]->set_card_index(card_index);
482         }
483         num_html_inputs = html_inputs.size();
484 #endif
485
486         BMUSBCapture::set_card_connected_callback(bind(&Mixer::bm_hotplug_add, this, _1));
487         BMUSBCapture::start_bm_thread();
488
489 #ifdef HAVE_SRT
490         if (global_flags.srt_port >= 0) {
491                 start_srt();
492         }
493 #endif
494
495         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
496                 cards[card_index].queue_length_policy.reset(card_index);
497         }
498
499         chroma_subsampler.reset(new ChromaSubsampler(resource_pool.get()));
500
501         if (global_flags.ten_bit_input) {
502                 if (!v210Converter::has_hardware_support()) {
503                         fprintf(stderr, "ERROR: --ten-bit-input requires support for OpenGL compute shaders\n");
504                         fprintf(stderr, "       (OpenGL 4.3, or GL_ARB_compute_shader + GL_ARB_shader_image_load_store).\n");
505                         abort();
506                 }
507                 v210_converter.reset(new v210Converter());
508
509                 // These are all the widths listed in the Blackmagic SDK documentation
510                 // (section 2.7.3, “Display Modes”).
511                 v210_converter->precompile_shader(720);
512                 v210_converter->precompile_shader(1280);
513                 v210_converter->precompile_shader(1920);
514                 v210_converter->precompile_shader(2048);
515                 v210_converter->precompile_shader(3840);
516                 v210_converter->precompile_shader(4096);
517         }
518         if (global_flags.ten_bit_output) {
519                 if (!v210Converter::has_hardware_support()) {
520                         fprintf(stderr, "ERROR: --ten-bit-output requires support for OpenGL compute shaders\n");
521                         fprintf(stderr, "       (OpenGL 4.3, or GL_ARB_compute_shader + GL_ARB_shader_image_load_store).\n");
522                         abort();
523                 }
524         }
525
526         timecode_renderer.reset(new TimecodeRenderer(resource_pool.get(), global_flags.width, global_flags.height));
527         display_timecode_in_stream = global_flags.display_timecode_in_stream;
528         display_timecode_on_stdout = global_flags.display_timecode_on_stdout;
529
530         if (global_flags.enable_alsa_output) {
531                 alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
532         }
533         if (global_flags.output_card != -1) {
534                 desired_output_card_index = global_flags.output_card;
535                 set_output_card_internal(global_flags.output_card);
536         }
537
538         output_jitter_history.register_metrics({{ "card", "output" }});
539
540         ImageInput::start_update_thread(image_update_surface);
541 }
542
543 Mixer::~Mixer()
544 {
545         ImageInput::end_update_thread();
546
547         if (mjpeg_encoder != nullptr) {
548                 mjpeg_encoder->stop();
549         }
550         httpd.stop();
551         BMUSBCapture::stop_bm_thread();
552
553         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
554                 if (cards[card_index].capture != nullptr) {  // Active.
555                         cards[card_index].capture->stop_dequeue_thread();
556                 }
557                 if (cards[card_index].output) {
558                         cards[card_index].output->end_output();
559                         cards[card_index].output.reset();
560                 }
561         }
562
563         video_encoder.reset(nullptr);
564 }
565
566 void Mixer::configure_card(unsigned card_index, CaptureInterface *capture, CardType card_type, DeckLinkOutput *output, bool is_srt_card)
567 {
568         bool is_active = capture != nullptr;
569         if (is_active) {
570                 printf("Configuring card %d...\n", card_index);
571         } else {
572                 assert(card_type == CardType::FAKE_CAPTURE);
573         }
574
575         CaptureCard *card = &cards[card_index];
576         if (card->capture != nullptr) {
577                 card_mutex.unlock();  // The dequeue thread could be waiting for bm_frame().
578                 card->capture->stop_dequeue_thread();
579                 card_mutex.lock();
580         }
581         card->capture.reset(capture);
582         card->is_fake_capture = (card_type == CardType::FAKE_CAPTURE);
583         if (card->is_fake_capture) {
584                 card->fake_capture_counter = fake_capture_counter++;
585         }
586         card->is_cef_capture = (card_type == CardType::CEF_INPUT);
587         card->may_have_dropped_last_frame = false;
588         card->type = card_type;
589         if (card->output.get() != output) {
590                 card->output.reset(output);
591         }
592
593         PixelFormat pixel_format;
594         if (card_type == CardType::FFMPEG_INPUT) {
595                 pixel_format = capture->get_current_pixel_format();
596         } else if (card_type == CardType::CEF_INPUT) {
597                 pixel_format = PixelFormat_8BitBGRA;
598         } else if (global_flags.ten_bit_input) {
599                 pixel_format = PixelFormat_10BitYCbCr;
600         } else {
601                 pixel_format = PixelFormat_8BitYCbCr;
602         }
603
604         if (is_active) {
605                 card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
606                 if (card->frame_allocator == nullptr) {
607                         card->frame_allocator.reset(new PBOFrameAllocator(pixel_format, 8 << 20, global_flags.width, global_flags.height, card_index, mjpeg_encoder.get()));  // 8 MB.
608                 } else {
609                         // The format could have changed, but we cannot reset the allocator
610                         // and create a new one from scratch, since there may be allocated
611                         // frames from it that expect to call release_frame() on it.
612                         // Instead, ask the allocator to create new frames for us and discard
613                         // any old ones as they come back. This takes the mutex while
614                         // allocating, but nothing should really be sending frames in there
615                         // right now anyway (start_bm_capture() has not been called yet).
616                         card->frame_allocator->reconfigure(pixel_format, 8 << 20, global_flags.width, global_flags.height, card_index, mjpeg_encoder.get());
617                 }
618                 card->capture->set_video_frame_allocator(card->frame_allocator.get());
619                 if (card->surface == nullptr) {
620                         card->surface = create_surface_with_same_format(mixer_surface);
621                 }
622                 while (!card->new_frames.empty()) card->new_frames.pop_front();
623                 card->last_timecode = -1;
624                 card->capture->set_pixel_format(pixel_format);
625                 card->capture->configure_card();
626
627                 // NOTE: start_bm_capture() happens in thread_func().
628         }
629
630         if (is_srt_card) {
631                 assert(card_type == CardType::FFMPEG_INPUT);
632         }
633
634         DeviceSpec device{InputSourceType::CAPTURE_CARD, card_index};
635         unsigned num_channels = card_type == CardType::LIVE_CARD ? 8 : 2;
636         if (is_active) {
637                 audio_mixer->set_device_parameters(device, card->capture->get_description(), card_type, num_channels, /*active=*/true);
638         } else {
639                 // Note: Keeps the previous name, if any.
640                 char name[32];
641                 snprintf(name, sizeof(name), "Fake card %u", card_index + 1);
642                 audio_mixer->set_device_parameters(device, name, card_type, num_channels, /*active=*/false);
643         }
644         audio_mixer->reset_resampler(device);
645         audio_mixer->trigger_state_changed_callback();
646
647         // Unregister old metrics, if any.
648         if (!card->labels.empty()) {
649                 const vector<pair<string, string>> &labels = card->labels;
650                 card->jitter_history.unregister_metrics(labels);
651                 card->queue_length_policy.unregister_metrics(labels);
652                 global_metrics.remove_if_exists("input_received_frames", labels);
653                 global_metrics.remove_if_exists("input_dropped_frames_jitter", labels);
654                 global_metrics.remove_if_exists("input_dropped_frames_error", labels);
655                 global_metrics.remove_if_exists("input_dropped_frames_resets", labels);
656                 global_metrics.remove_if_exists("input_queue_length_frames", labels);
657                 global_metrics.remove_if_exists("input_queue_duped_frames", labels);
658
659                 global_metrics.remove_if_exists("input_has_signal_bool", labels);
660                 global_metrics.remove_if_exists("input_is_connected_bool", labels);
661                 global_metrics.remove_if_exists("input_interlaced_bool", labels);
662                 global_metrics.remove_if_exists("input_width_pixels", labels);
663                 global_metrics.remove_if_exists("input_height_pixels", labels);
664                 global_metrics.remove_if_exists("input_frame_rate_nom", labels);
665                 global_metrics.remove_if_exists("input_frame_rate_den", labels);
666                 global_metrics.remove_if_exists("input_sample_rate_hz", labels);
667
668                 // SRT metrics.
669
670                 // Global measurements (counters).
671                 global_metrics.remove_if_exists("srt_uptime_seconds", labels);
672                 global_metrics.remove_if_exists("srt_send_duration_seconds", labels);
673                 global_metrics.remove_if_exists("srt_sent_bytes", labels);
674                 global_metrics.remove_if_exists("srt_received_bytes", labels);
675
676                 vector<pair<string, string>> packet_labels = card->labels;
677                 packet_labels.emplace_back("type", "normal");
678                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
679                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
680
681                 packet_labels.back().second = "lost";
682                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
683                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
684
685                 packet_labels.back().second = "retransmitted";
686                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
687                 global_metrics.remove_if_exists("srt_sent_bytes", packet_labels);
688
689                 packet_labels.back().second = "ack";
690                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
691                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
692
693                 packet_labels.back().second = "nak";
694                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
695                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
696
697                 packet_labels.back().second = "dropped";
698                 global_metrics.remove_if_exists("srt_sent_packets", packet_labels);
699                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
700                 global_metrics.remove_if_exists("srt_sent_bytes", packet_labels);
701                 global_metrics.remove_if_exists("srt_received_bytes", packet_labels);
702
703                 packet_labels.back().second = "undecryptable";
704                 global_metrics.remove_if_exists("srt_received_packets", packet_labels);
705                 global_metrics.remove_if_exists("srt_received_bytes", packet_labels);
706
707                 global_metrics.remove_if_exists("srt_filter_sent_extra_packets", labels);
708                 global_metrics.remove_if_exists("srt_filter_received_extra_packets", labels);
709                 global_metrics.remove_if_exists("srt_filter_received_rebuilt_packets", labels);
710                 global_metrics.remove_if_exists("srt_filter_received_lost_packets", labels);
711
712                 // Instant measurements (gauges).
713                 global_metrics.remove_if_exists("srt_packet_sending_period_seconds", labels);
714                 global_metrics.remove_if_exists("srt_flow_window_packets", labels);
715                 global_metrics.remove_if_exists("srt_congestion_window_packets", labels);
716                 global_metrics.remove_if_exists("srt_flight_size_packets", labels);
717                 global_metrics.remove_if_exists("srt_rtt_seconds", labels);
718                 global_metrics.remove_if_exists("srt_estimated_bandwidth_bits_per_second", labels);
719                 global_metrics.remove_if_exists("srt_bandwidth_ceiling_bits_per_second", labels);
720                 global_metrics.remove_if_exists("srt_send_buffer_available_bytes", labels);
721                 global_metrics.remove_if_exists("srt_receive_buffer_available_bytes", labels);
722                 global_metrics.remove_if_exists("srt_mss_bytes", labels);
723
724                 global_metrics.remove_if_exists("srt_sender_unacked_packets", labels);
725                 global_metrics.remove_if_exists("srt_sender_unacked_bytes", labels);
726                 global_metrics.remove_if_exists("srt_sender_unacked_timespan_seconds", labels);
727                 global_metrics.remove_if_exists("srt_sender_delivery_delay_seconds", labels);
728
729                 global_metrics.remove_if_exists("srt_receiver_unacked_packets", labels);
730                 global_metrics.remove_if_exists("srt_receiver_unacked_bytes", labels);
731                 global_metrics.remove_if_exists("srt_receiver_unacked_timespan_seconds", labels);
732                 global_metrics.remove_if_exists("srt_receiver_delivery_delay_seconds", labels);
733         }
734
735         if (is_active) {
736                 // Register metrics.
737                 vector<pair<string, string>> labels;
738                 char card_name[64];
739                 snprintf(card_name, sizeof(card_name), "%d", card_index);
740                 labels.emplace_back("card", card_name);
741
742                 switch (card_type) {
743                 case CardType::LIVE_CARD:
744                         labels.emplace_back("cardtype", "live");
745                         break;
746                 case CardType::FAKE_CAPTURE:
747                         labels.emplace_back("cardtype", "fake");
748                         break;
749                 case CardType::FFMPEG_INPUT:
750                         if (is_srt_card) {
751                                 labels.emplace_back("cardtype", "srt");
752                         } else {
753                                 labels.emplace_back("cardtype", "ffmpeg");
754                         }
755                         break;
756                 case CardType::CEF_INPUT:
757                         labels.emplace_back("cardtype", "cef");
758                         break;
759                 default:
760                         assert(false);
761                 }
762                 card->jitter_history.register_metrics(labels);
763                 card->queue_length_policy.register_metrics(labels);
764                 global_metrics.add("input_received_frames", labels, &card->metric_input_received_frames);
765                 global_metrics.add("input_dropped_frames_jitter", labels, &card->metric_input_dropped_frames_jitter);
766                 global_metrics.add("input_dropped_frames_error", labels, &card->metric_input_dropped_frames_error);
767                 global_metrics.add("input_dropped_frames_resets", labels, &card->metric_input_resets);
768                 global_metrics.add("input_queue_length_frames", labels, &card->metric_input_queue_length_frames, Metrics::TYPE_GAUGE);
769                 global_metrics.add("input_queue_duped_frames", labels, &card->metric_input_duped_frames);
770
771                 global_metrics.add("input_has_signal_bool", labels, &card->metric_input_has_signal_bool, Metrics::TYPE_GAUGE);
772                 global_metrics.add("input_is_connected_bool", labels, &card->metric_input_is_connected_bool, Metrics::TYPE_GAUGE);
773                 global_metrics.add("input_interlaced_bool", labels, &card->metric_input_interlaced_bool, Metrics::TYPE_GAUGE);
774                 global_metrics.add("input_width_pixels", labels, &card->metric_input_width_pixels, Metrics::TYPE_GAUGE);
775                 global_metrics.add("input_height_pixels", labels, &card->metric_input_height_pixels, Metrics::TYPE_GAUGE);
776                 global_metrics.add("input_frame_rate_nom", labels, &card->metric_input_frame_rate_nom, Metrics::TYPE_GAUGE);
777                 global_metrics.add("input_frame_rate_den", labels, &card->metric_input_frame_rate_den, Metrics::TYPE_GAUGE);
778                 global_metrics.add("input_sample_rate_hz", labels, &card->metric_input_sample_rate_hz, Metrics::TYPE_GAUGE);
779
780                 if (is_srt_card) {
781                         // Global measurements (counters).
782                         global_metrics.add("srt_uptime_seconds", labels, &card->metric_srt_uptime_seconds);
783                         global_metrics.add("srt_send_duration_seconds", labels, &card->metric_srt_send_duration_seconds);
784                         global_metrics.add("srt_sent_bytes", labels, &card->metric_srt_sent_bytes);
785                         global_metrics.add("srt_received_bytes", labels, &card->metric_srt_received_bytes);
786
787                         vector<pair<string, string>> packet_labels = labels;
788                         packet_labels.emplace_back("type", "normal");
789                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_normal);
790                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_normal);
791
792                         packet_labels.back().second = "lost";
793                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_lost);
794                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_lost);
795
796                         packet_labels.back().second = "retransmitted";
797                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_retransmitted);
798                         global_metrics.add("srt_sent_bytes", packet_labels, &card->metric_srt_sent_bytes_retransmitted);
799
800                         packet_labels.back().second = "ack";
801                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_ack);
802                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_ack);
803
804                         packet_labels.back().second = "nak";
805                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_nak);
806                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_nak);
807
808                         packet_labels.back().second = "dropped";
809                         global_metrics.add("srt_sent_packets", packet_labels, &card->metric_srt_sent_packets_dropped);
810                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_dropped);
811                         global_metrics.add("srt_sent_bytes", packet_labels, &card->metric_srt_sent_bytes_dropped);
812                         global_metrics.add("srt_received_bytes", packet_labels, &card->metric_srt_received_bytes_dropped);
813
814                         packet_labels.back().second = "undecryptable";
815                         global_metrics.add("srt_received_packets", packet_labels, &card->metric_srt_received_packets_undecryptable);
816                         global_metrics.add("srt_received_bytes", packet_labels, &card->metric_srt_received_bytes_undecryptable);
817
818                         global_metrics.add("srt_filter_sent_extra_packets", labels, &card->metric_srt_filter_sent_packets);
819                         global_metrics.add("srt_filter_received_extra_packets", labels, &card->metric_srt_filter_received_extra_packets);
820                         global_metrics.add("srt_filter_received_rebuilt_packets", labels, &card->metric_srt_filter_received_rebuilt_packets);
821                         global_metrics.add("srt_filter_received_lost_packets", labels, &card->metric_srt_filter_received_lost_packets);
822
823                         // Instant measurements (gauges).
824                         global_metrics.add("srt_packet_sending_period_seconds", labels, &card->metric_srt_packet_sending_period_seconds, Metrics::TYPE_GAUGE);
825                         global_metrics.add("srt_flow_window_packets", labels, &card->metric_srt_flow_window_packets, Metrics::TYPE_GAUGE);
826                         global_metrics.add("srt_congestion_window_packets", labels, &card->metric_srt_congestion_window_packets, Metrics::TYPE_GAUGE);
827                         global_metrics.add("srt_flight_size_packets", labels, &card->metric_srt_flight_size_packets, Metrics::TYPE_GAUGE);
828                         global_metrics.add("srt_rtt_seconds", labels, &card->metric_srt_rtt_seconds, Metrics::TYPE_GAUGE);
829                         global_metrics.add("srt_estimated_bandwidth_bits_per_second", labels, &card->metric_srt_estimated_bandwidth_bits_per_second, Metrics::TYPE_GAUGE);
830                         global_metrics.add("srt_bandwidth_ceiling_bits_per_second", labels, &card->metric_srt_bandwidth_ceiling_bits_per_second, Metrics::TYPE_GAUGE);
831                         global_metrics.add("srt_send_buffer_available_bytes", labels, &card->metric_srt_send_buffer_available_bytes, Metrics::TYPE_GAUGE);
832                         global_metrics.add("srt_receive_buffer_available_bytes", labels, &card->metric_srt_receive_buffer_available_bytes, Metrics::TYPE_GAUGE);
833                         global_metrics.add("srt_mss_bytes", labels, &card->metric_srt_mss_bytes, Metrics::TYPE_GAUGE);
834
835                         global_metrics.add("srt_sender_unacked_packets", labels, &card->metric_srt_sender_unacked_packets, Metrics::TYPE_GAUGE);
836                         global_metrics.add("srt_sender_unacked_bytes", labels, &card->metric_srt_sender_unacked_bytes, Metrics::TYPE_GAUGE);
837                         global_metrics.add("srt_sender_unacked_timespan_seconds", labels, &card->metric_srt_sender_unacked_timespan_seconds, Metrics::TYPE_GAUGE);
838                         global_metrics.add("srt_sender_delivery_delay_seconds", labels, &card->metric_srt_sender_delivery_delay_seconds, Metrics::TYPE_GAUGE);
839
840                         global_metrics.add("srt_receiver_unacked_packets", labels, &card->metric_srt_receiver_unacked_packets, Metrics::TYPE_GAUGE);
841                         global_metrics.add("srt_receiver_unacked_bytes", labels, &card->metric_srt_receiver_unacked_bytes, Metrics::TYPE_GAUGE);
842                         global_metrics.add("srt_receiver_unacked_timespan_seconds", labels, &card->metric_srt_receiver_unacked_timespan_seconds, Metrics::TYPE_GAUGE);
843                         global_metrics.add("srt_receiver_delivery_delay_seconds", labels, &card->metric_srt_receiver_delivery_delay_seconds, Metrics::TYPE_GAUGE);
844                 }
845
846                 card->labels = labels;
847         } else {
848                 card->labels.clear();
849         }
850 }
851
852 void Mixer::set_output_card_internal(int card_index)
853 {
854         // We don't really need to take card_mutex, since we're in the mixer
855         // thread and don't mess with any queues (which is the only thing that happens
856         // from other threads), but it's probably the safest in the long run.
857         unique_lock<mutex> lock(card_mutex);
858         if (output_card_index != -1) {
859                 // Switch the old card from output to input.
860                 CaptureCard *old_card = &cards[output_card_index];
861                 old_card->output->end_output();
862
863                 // Stop the fake card that we put into place.
864                 // This needs to _not_ happen under the mutex, to avoid deadlock
865                 // (delivering the last frame needs to take the mutex).
866                 CaptureInterface *fake_capture = old_card->capture.get();
867                 lock.unlock();
868                 fake_capture->stop_dequeue_thread();
869                 lock.lock();
870                 old_card->capture = move(old_card->parked_capture);  // TODO: reset the metrics
871                 old_card->is_fake_capture = false;
872                 old_card->capture->start_bm_capture();
873         }
874         if (card_index != -1) {
875                 CaptureCard *card = &cards[card_index];
876                 CaptureInterface *capture = card->capture.get();
877                 // TODO: DeckLinkCapture::stop_dequeue_thread can actually take
878                 // several seconds to complete (blocking on DisableVideoInput);
879                 // see if we can maybe do it asynchronously.
880                 lock.unlock();
881                 capture->stop_dequeue_thread();
882                 lock.lock();
883                 card->parked_capture = move(card->capture);
884                 CaptureInterface *fake_capture = new FakeCapture(global_flags.width, global_flags.height, FAKE_FPS, OUTPUT_FREQUENCY, card_index, global_flags.fake_cards_audio);
885                 configure_card(card_index, fake_capture, CardType::FAKE_CAPTURE, card->output.release(), /*is_srt_card=*/false);
886                 card->queue_length_policy.reset(card_index);
887                 card->capture->start_bm_capture();
888                 desired_output_video_mode = output_video_mode = card->output->pick_video_mode(desired_output_video_mode);
889                 card->output->start_output(desired_output_video_mode, pts_int);
890         }
891         output_card_index = card_index;
892         output_jitter_history.clear();
893 }
894
895 namespace {
896
897 int unwrap_timecode(uint16_t current_wrapped, int last)
898 {
899         uint16_t last_wrapped = last & 0xffff;
900         if (current_wrapped > last_wrapped) {
901                 return (last & ~0xffff) | current_wrapped;
902         } else {
903                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
904         }
905 }
906
907 }  // namespace
908
909 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
910                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
911                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
912 {
913         DeviceSpec device{InputSourceType::CAPTURE_CARD, card_index};
914         CaptureCard *card = &cards[card_index];
915
916         ++card->metric_input_received_frames;
917         card->metric_input_has_signal_bool = video_format.has_signal;
918         card->metric_input_is_connected_bool = video_format.is_connected;
919         card->metric_input_interlaced_bool = video_format.interlaced;
920         card->metric_input_width_pixels = video_format.width;
921         card->metric_input_height_pixels = video_format.height;
922         card->metric_input_frame_rate_nom = video_format.frame_rate_nom;
923         card->metric_input_frame_rate_den = video_format.frame_rate_den;
924         card->metric_input_sample_rate_hz = audio_format.sample_rate;
925
926         if (is_mode_scanning[card_index]) {
927                 if (video_format.has_signal) {
928                         // Found a stable signal, so stop scanning.
929                         is_mode_scanning[card_index] = false;
930                 } else {
931                         static constexpr double switch_time_s = 0.1;  // Should be enough time for the signal to stabilize.
932                         steady_clock::time_point now = steady_clock::now();
933                         double sec_since_last_switch = duration<double>(steady_clock::now() - last_mode_scan_change[card_index]).count();
934                         if (sec_since_last_switch > switch_time_s) {
935                                 // It isn't this mode; try the next one.
936                                 mode_scanlist_index[card_index]++;
937                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
938                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
939                                 last_mode_scan_change[card_index] = now;
940                         }
941                 }
942         }
943
944         int64_t frame_length = int64_t(TIMEBASE) * video_format.frame_rate_den / video_format.frame_rate_nom;
945         assert(frame_length > 0);
946
947         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
948         if (num_samples > OUTPUT_FREQUENCY / 10 && card->type != CardType::FFMPEG_INPUT) {
949                 printf("%s: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
950                         description_for_card(card_index).c_str(), int(audio_frame.len), int(audio_offset),
951                         timecode, int(video_frame.len), int(video_offset), video_format.id);
952                 if (video_frame.owner) {
953                         video_frame.owner->release_frame(video_frame);
954                 }
955                 if (audio_frame.owner) {
956                         audio_frame.owner->release_frame(audio_frame);
957                 }
958                 return;
959         }
960
961         int dropped_frames = 0;
962         if (card->last_timecode != -1) {
963                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
964         }
965
966         // Number of samples per frame if we need to insert silence.
967         // (Could be nonintegral, but resampling will save us then.)
968         const int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
969
970         if (dropped_frames > MAX_FPS * 2) {
971                 fprintf(stderr, "%s lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
972                         description_for_card(card_index).c_str(), card->last_timecode, timecode);
973                 audio_mixer->reset_resampler(device);
974                 dropped_frames = 0;
975                 ++card->metric_input_resets;
976         } else if (dropped_frames > 0) {
977                 // Insert silence as needed.
978                 fprintf(stderr, "%s dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
979                         description_for_card(card_index).c_str(), dropped_frames, timecode);
980                 card->metric_input_dropped_frames_error += dropped_frames;
981
982                 bool success;
983                 do {
984                         success = audio_mixer->add_silence(device, silence_samples, dropped_frames);
985                 } while (!success);
986         }
987
988         if (num_samples > 0) {
989                 audio_mixer->add_audio(device, audio_frame.data + audio_offset, num_samples, audio_format, audio_frame.received_timestamp);
990
991                 // Audio for the MJPEG stream. We don't resample; audio that's not in 48 kHz
992                 // just gets dropped for now.
993                 //
994                 // Only bother doing MJPEG encoding if there are any connected clients
995                 // that want the stream.
996                 if (httpd.get_num_connected_multicam_clients() > 0 ||
997                     httpd.get_num_connected_siphon_clients(card_index) > 0) {
998                         vector<int32_t> converted_samples = convert_audio_to_fixed32(audio_frame.data + audio_offset, num_samples, audio_format, 2);
999                         lock_guard<mutex> lock(card_mutex);
1000                         if (card->new_raw_audio.empty()) {
1001                                 card->new_raw_audio = move(converted_samples);
1002                         } else {
1003                                 // For raw audio, we don't really synchronize audio and video;
1004                                 // we just put the audio in frame by frame, and if a video frame is
1005                                 // dropped, we still keep the audio, which means it will be added
1006                                 // to the beginning of the next frame. It would probably be better
1007                                 // to move the audio pts earlier to show this, but most players can
1008                                 // live with some jitter, and in a lot of ways, it's much nicer for
1009                                 // Futatabi to have all audio locked to a video frame.
1010                                 card->new_raw_audio.insert(card->new_raw_audio.end(), converted_samples.begin(), converted_samples.end());
1011
1012                                 // Truncate to one second, just to be sure we don't have infinite buildup in case of weirdness.
1013                                 if (card->new_raw_audio.size() > OUTPUT_FREQUENCY * 2) {
1014                                         size_t excess_samples = card->new_raw_audio.size() - OUTPUT_FREQUENCY * 2;
1015                                         card->new_raw_audio.erase(card->new_raw_audio.begin(), card->new_raw_audio.begin() + excess_samples);
1016                                 }
1017                         }
1018                 }
1019         }
1020
1021         // Done with the audio, so release it.
1022         if (audio_frame.owner) {
1023                 audio_frame.owner->release_frame(audio_frame);
1024         }
1025
1026         card->last_timecode = timecode;
1027
1028         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
1029         if (card->type == CardType::FFMPEG_INPUT && userdata != nullptr) {
1030                 FFmpegCapture *ffmpeg_capture = static_cast<FFmpegCapture *>(card->capture.get());
1031                 userdata->has_last_subtitle = ffmpeg_capture->get_has_last_subtitle();
1032                 userdata->last_subtitle = ffmpeg_capture->get_last_subtitle();
1033         }
1034 #ifdef HAVE_SRT
1035         if (card->type == CardType::FFMPEG_INPUT) {
1036                 int srt_sock = static_cast<FFmpegCapture *>(card->capture.get())->get_srt_sock();
1037                 if (srt_sock != -1) {
1038                         update_srt_stats(srt_sock, card);
1039                 }
1040         }
1041 #endif
1042
1043         size_t y_offset, cbcr_offset;
1044         size_t expected_length = video_format.stride * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom);
1045         if (userdata != nullptr && userdata->pixel_format == PixelFormat_8BitYCbCrPlanar) {
1046                 // The calculation above is wrong for planar Y'CbCr, so just override it.
1047                 assert(card->type == CardType::FFMPEG_INPUT);
1048                 assert(video_offset == 0);
1049                 expected_length = video_frame.len;
1050
1051                 userdata->ycbcr_format = (static_cast<FFmpegCapture *>(card->capture.get()))->get_current_frame_ycbcr_format();
1052                 y_offset = 0;
1053                 cbcr_offset = video_format.width * video_format.height;
1054         } else {
1055                 // All the other Y'CbCr formats are 4:2:2.
1056                 y_offset = video_frame.size / 2 + video_offset / 2;
1057                 cbcr_offset = video_offset / 2;
1058         }
1059         if (video_frame.len - video_offset == 0 ||
1060             video_frame.len - video_offset != expected_length) {
1061                 if (video_frame.len != 0) {
1062                         printf("%s: Dropping video frame with wrong length (%zu; expected %zu)\n",
1063                                 description_for_card(card_index).c_str(), video_frame.len - video_offset, expected_length);
1064                 }
1065                 if (video_frame.owner) {
1066                         video_frame.owner->release_frame(video_frame);
1067                 }
1068
1069                 // Still send on the information that we _had_ a frame, even though it's corrupted,
1070                 // so that pts can go up accordingly.
1071                 {
1072                         lock_guard<mutex> lock(card_mutex);
1073                         CaptureCard::NewFrame new_frame;
1074                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
1075                         new_frame.length = frame_length;
1076                         new_frame.interlaced = false;
1077                         new_frame.dropped_frames = dropped_frames;
1078                         new_frame.received_timestamp = video_frame.received_timestamp;
1079                         card->new_frames.push_back(move(new_frame));
1080                         card->jitter_history.frame_arrived(video_frame.received_timestamp, frame_length, dropped_frames);
1081                 }
1082                 card->new_frames_changed.notify_all();
1083                 return;
1084         }
1085
1086         unsigned num_fields = video_format.interlaced ? 2 : 1;
1087         steady_clock::time_point frame_upload_start;
1088         if (video_format.interlaced) {
1089                 // Send the two fields along as separate frames; the other side will need to add
1090                 // a deinterlacer to actually get this right.
1091                 assert(video_format.height % 2 == 0);
1092                 video_format.height /= 2;
1093                 assert(frame_length % 2 == 0);
1094                 frame_length /= 2;
1095                 num_fields = 2;
1096                 frame_upload_start = steady_clock::now();
1097         }
1098         assert(userdata != nullptr);
1099         userdata->last_interlaced = video_format.interlaced;
1100         userdata->last_has_signal = video_format.has_signal;
1101         userdata->last_is_connected = video_format.is_connected;
1102         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
1103         userdata->last_frame_rate_den = video_format.frame_rate_den;
1104         RefCountedFrame frame(video_frame);
1105
1106         // Send the frames on to the main thread, which will upload and process htem.
1107         // It is entirely possible to upload them in the same thread (and it might even be
1108         // faster, depending on the GPU and driver), but it appears to be trickling
1109         // driver bugs very easily.
1110         //
1111         // Note that this means we must hold on to the actual frame data in <userdata>
1112         // until the upload is done, but we hold on to <frame> much longer than that
1113         // (in fact, all the way until we no longer use the texture in rendering).
1114         for (unsigned field = 0; field < num_fields; ++field) {
1115                 if (field == 1) {
1116                         // Don't upload the second field as fast as we can; wait until
1117                         // the field time has approximately passed. (Otherwise, we could
1118                         // get timing jitter against the other sources, and possibly also
1119                         // against the video display, although the latter is not as critical.)
1120                         // This requires our system clock to be reasonably close to the
1121                         // video clock, but that's not an unreasonable assumption.
1122                         steady_clock::time_point second_field_start = frame_upload_start +
1123                                 nanoseconds(frame_length * 1000000000 / TIMEBASE);
1124                         this_thread::sleep_until(second_field_start);
1125                 }
1126
1127                 {
1128                         lock_guard<mutex> lock(card_mutex);
1129                         CaptureCard::NewFrame new_frame;
1130                         new_frame.frame = frame;
1131                         new_frame.length = frame_length;
1132                         new_frame.field = field;
1133                         new_frame.interlaced = video_format.interlaced;
1134                         new_frame.dropped_frames = dropped_frames;
1135                         new_frame.received_timestamp = video_frame.received_timestamp;  // Ignore the audio timestamp.
1136                         new_frame.video_format = video_format;
1137                         new_frame.video_offset = video_offset;
1138                         new_frame.y_offset = y_offset;
1139                         new_frame.cbcr_offset = cbcr_offset;
1140                         new_frame.texture_uploaded = false;
1141                         if (card->type == CardType::FFMPEG_INPUT) {
1142                                 FFmpegCapture *ffmpeg_capture = static_cast<FFmpegCapture *>(card->capture.get());
1143                                 new_frame.neutral_color = ffmpeg_capture->get_last_neutral_color();
1144                         }
1145                         card->new_frames.push_back(move(new_frame));
1146                         card->jitter_history.frame_arrived(video_frame.received_timestamp, frame_length, dropped_frames);
1147                         card->may_have_dropped_last_frame = false;
1148                 }
1149                 card->new_frames_changed.notify_all();
1150         }
1151 }
1152
1153 void Mixer::upload_texture_for_frame(
1154         int field, bmusb::VideoFormat video_format,
1155         size_t y_offset, size_t cbcr_offset, size_t video_offset, PBOFrameAllocator::Userdata *userdata)
1156 {
1157         size_t cbcr_width, cbcr_height;
1158         if (userdata != nullptr && userdata->pixel_format == PixelFormat_8BitYCbCrPlanar) {
1159                 cbcr_width = video_format.width / userdata->ycbcr_format.chroma_subsampling_x;
1160                 cbcr_height = video_format.height / userdata->ycbcr_format.chroma_subsampling_y;
1161         } else {
1162                 // All the other Y'CbCr formats are 4:2:2.
1163                 cbcr_width = video_format.width / 2;
1164                 cbcr_height = video_format.height;
1165         }
1166
1167         bool interlaced_stride = video_format.interlaced && (video_format.second_field_start == 1);
1168         if (video_format.interlaced) {
1169                 cbcr_height /= 2;
1170         }
1171
1172         unsigned field_start_line;
1173         if (field == 1) {
1174                 field_start_line = video_format.second_field_start;
1175         } else {
1176                 field_start_line = video_format.extra_lines_top;
1177         }
1178
1179         // For anything not FRAME_FORMAT_YCBCR_10BIT, v210_width will be nonsensical but not used.
1180         size_t v210_width = video_format.stride / sizeof(uint32_t);
1181         ensure_texture_resolution(userdata, field, video_format.width, video_format.height, cbcr_width, cbcr_height, v210_width);
1182
1183         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, userdata->pbo);
1184         check_error();
1185
1186         switch (userdata->pixel_format) {
1187                 case PixelFormat_10BitYCbCr: {
1188                         size_t field_start = video_offset + video_format.stride * field_start_line;
1189                         upload_texture(userdata->tex_v210[field], v210_width, video_format.height, video_format.stride, interlaced_stride, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, field_start);
1190                         v210_converter->convert(userdata->tex_v210[field], userdata->tex_444[field], video_format.width, video_format.height);
1191                         break;
1192                 }
1193                 case PixelFormat_8BitYCbCr: {
1194                         size_t field_y_start = y_offset + video_format.width * field_start_line;
1195                         size_t field_cbcr_start = cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t);
1196
1197                         // Make up our own strides, since we are interleaving.
1198                         upload_texture(userdata->tex_y[field], video_format.width, video_format.height, video_format.width, interlaced_stride, GL_RED, GL_UNSIGNED_BYTE, field_y_start);
1199                         upload_texture(userdata->tex_cbcr[field], cbcr_width, cbcr_height, cbcr_width * sizeof(uint16_t), interlaced_stride, GL_RG, GL_UNSIGNED_BYTE, field_cbcr_start);
1200                         break;
1201                 }
1202                 case PixelFormat_8BitYCbCrPlanar: {
1203                         assert(field_start_line == 0);  // We don't really support interlaced here.
1204                         size_t field_y_start = y_offset;
1205                         size_t field_cb_start = cbcr_offset;
1206                         size_t field_cr_start = cbcr_offset + cbcr_width * cbcr_height;
1207
1208                         // Make up our own strides, since we are interleaving.
1209                         upload_texture(userdata->tex_y[field], video_format.width, video_format.height, video_format.width, interlaced_stride, GL_RED, GL_UNSIGNED_BYTE, field_y_start);
1210                         upload_texture(userdata->tex_cb[field], cbcr_width, cbcr_height, cbcr_width, interlaced_stride, GL_RED, GL_UNSIGNED_BYTE, field_cb_start);
1211                         upload_texture(userdata->tex_cr[field], cbcr_width, cbcr_height, cbcr_width, interlaced_stride, GL_RED, GL_UNSIGNED_BYTE, field_cr_start);
1212                         break;
1213                 }
1214                 case PixelFormat_8BitBGRA: {
1215                         size_t field_start = video_offset + video_format.stride * field_start_line;
1216                         upload_texture(userdata->tex_rgba[field], video_format.width, video_format.height, video_format.stride, interlaced_stride, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, field_start);
1217                         // These could be asked to deliver mipmaps at any time.
1218                         glBindTexture(GL_TEXTURE_2D, userdata->tex_rgba[field]);
1219                         check_error();
1220                         glGenerateMipmap(GL_TEXTURE_2D);
1221                         check_error();
1222                         glBindTexture(GL_TEXTURE_2D, 0);
1223                         check_error();
1224                         break;
1225                 }
1226                 default:
1227                         assert(false);
1228         }
1229
1230         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
1231         check_error();
1232 }
1233
1234 void Mixer::bm_hotplug_add(libusb_device *dev)
1235 {
1236         lock_guard<mutex> lock(hotplug_mutex);
1237         hotplugged_cards.push_back(dev);
1238 }
1239
1240 void Mixer::bm_hotplug_remove(unsigned card_index)
1241 {
1242         cards[card_index].new_frames_changed.notify_all();
1243 }
1244
1245 void Mixer::thread_func()
1246 {
1247         pthread_setname_np(pthread_self(), "Mixer_OpenGL");
1248
1249         eglBindAPI(EGL_OPENGL_API);
1250         QOpenGLContext *context = create_context(mixer_surface);
1251         if (!make_current(context, mixer_surface)) {
1252                 printf("oops\n");
1253                 abort();
1254         }
1255
1256         // Start the actual capture. (We don't want to do it before we're actually ready
1257         // to process output frames.)
1258         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1259                 if (int(card_index) != output_card_index && cards[card_index].capture != nullptr) {
1260                         cards[card_index].capture->start_bm_capture();
1261                 }
1262         }
1263
1264         BasicStats basic_stats(/*verbose=*/true, /*use_opengl=*/true);
1265         int stats_dropped_frames = 0;
1266
1267         while (!should_quit) {
1268                 if (desired_output_card_index != output_card_index) {
1269                         set_output_card_internal(desired_output_card_index);
1270                 }
1271                 if (output_card_index != -1 &&
1272                     desired_output_video_mode != output_video_mode) {
1273                         DeckLinkOutput *output = cards[output_card_index].output.get();
1274                         output->end_output();
1275                         desired_output_video_mode = output_video_mode = output->pick_video_mode(desired_output_video_mode);
1276                         output->start_output(desired_output_video_mode, pts_int);
1277                 }
1278
1279                 CaptureCard::NewFrame new_frames[MAX_VIDEO_CARDS];
1280                 bool has_new_frame[MAX_VIDEO_CARDS] = { false };
1281
1282                 bool master_card_is_output;
1283                 unsigned master_card_index;
1284                 if (output_card_index != -1) {
1285                         master_card_is_output = true;
1286                         master_card_index = output_card_index;
1287                 } else {
1288                         master_card_is_output = false;
1289                         master_card_index = theme->map_signal_to_card(master_clock_channel);
1290                         assert(master_card_index < MAX_VIDEO_CARDS);
1291                 }
1292
1293                 {
1294                         lock_guard<mutex> lock(card_mutex);
1295                         handle_hotplugged_cards();
1296                 }
1297
1298                 vector<int32_t> raw_audio[MAX_VIDEO_CARDS];  // For MJPEG encoding.
1299                 OutputFrameInfo output_frame_info = get_one_frame_from_each_card(master_card_index, master_card_is_output, new_frames, has_new_frame, raw_audio);
1300                 schedule_audio_resampling_tasks(output_frame_info.dropped_frames, output_frame_info.num_samples, output_frame_info.frame_duration, output_frame_info.is_preroll, output_frame_info.frame_timestamp);
1301                 stats_dropped_frames += output_frame_info.dropped_frames;
1302
1303                 for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1304                         if (card_index == master_card_index || !has_new_frame[card_index]) {
1305                                 continue;
1306                         }
1307                         if (new_frames[card_index].frame->len == 0) {
1308                                 ++new_frames[card_index].dropped_frames;
1309                         }
1310                         if (new_frames[card_index].dropped_frames > 0) {
1311                                 printf("%s dropped %d frames before this\n",
1312                                         description_for_card(card_index).c_str(), int(new_frames[card_index].dropped_frames));
1313                         }
1314                 }
1315
1316                 // If the first card is reporting a corrupted or otherwise dropped frame,
1317                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
1318                 if (!master_card_is_output &&
1319                     new_frames[master_card_index].frame != nullptr &&  // Timeout.
1320                     new_frames[master_card_index].frame->len == 0) {
1321                         ++stats_dropped_frames;
1322                         pts_int += new_frames[master_card_index].length;
1323                         continue;
1324                 }
1325
1326                 for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1327                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
1328                                 continue;
1329
1330                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
1331                         assert(new_frame->frame != nullptr);
1332                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
1333                         check_error();
1334
1335                         // The new texture might need uploading before use.
1336                         if (!new_frame->texture_uploaded) {
1337                                 upload_texture_for_frame(new_frame->field, new_frame->video_format, new_frame->y_offset, new_frame->cbcr_offset,
1338                                         new_frame->video_offset, (PBOFrameAllocator::Userdata *)new_frame->frame->userdata);
1339                                 new_frame->texture_uploaded = true;
1340                         }
1341
1342                         // Only set the white balance if it actually changed. This means that the user
1343                         // is free to override the white balance in a video with no white balance information
1344                         // actually set (ie. r=g=b=1 all the time), or one where the white point is wrong,
1345                         // but frame-to-frame decisions will be heeded. We do this pretty much as late
1346                         // as possible (ie., after picking out the frame from the buffer), so that we are sure
1347                         // that the change takes effect on exactly the right frame.
1348                         if (fabs(new_frame->neutral_color.r - last_received_neutral_color[card_index].r) > 1e-3 ||
1349                             fabs(new_frame->neutral_color.g - last_received_neutral_color[card_index].g) > 1e-3 ||
1350                             fabs(new_frame->neutral_color.b - last_received_neutral_color[card_index].b) > 1e-3) {
1351                                 theme->set_wb_for_card(card_index, new_frame->neutral_color.r, new_frame->neutral_color.g, new_frame->neutral_color.b);
1352                                 last_received_neutral_color[card_index] = new_frame->neutral_color;
1353                         }
1354
1355                         if (new_frame->frame->data_copy != nullptr && mjpeg_encoder->should_encode_mjpeg_for_card(card_index)) {
1356                                 RGBTriplet neutral_color = theme->get_white_balance_for_card(card_index);
1357                                 mjpeg_encoder->upload_frame(pts_int, card_index, new_frame->frame, new_frame->video_format, new_frame->y_offset, new_frame->cbcr_offset, move(raw_audio[card_index]), neutral_color);
1358                         }
1359
1360                 }
1361
1362                 int64_t frame_duration = output_frame_info.frame_duration;
1363                 render_one_frame(frame_duration);
1364                 {
1365                         lock_guard<mutex> lock(frame_num_mutex);
1366                         ++frame_num;
1367                 }
1368                 frame_num_updated.notify_all();
1369                 pts_int += frame_duration;
1370
1371                 basic_stats.update(frame_num, stats_dropped_frames);
1372                 // if (frame_num % 100 == 0) chain->print_phase_timing();
1373
1374                 if (should_cut.exchange(false)) {  // Test and clear.
1375                         video_encoder->do_cut(frame_num);
1376                 }
1377
1378 #if 0
1379                 // Reset every 100 frames, so that local variations in frame times
1380                 // (especially for the first few frames, when the shaders are
1381                 // compiled etc.) don't make it hard to measure for the entire
1382                 // remaining duration of the program.
1383                 if (frame == 10000) {
1384                         frame = 0;
1385                         start = now;
1386                 }
1387 #endif
1388                 check_error();
1389         }
1390
1391         resource_pool->clean_context();
1392 }
1393
1394 bool Mixer::input_card_is_master_clock(unsigned card_index, unsigned master_card_index) const
1395 {
1396         if (output_card_index != -1) {
1397                 // The output card (ie., cards[output_card_index].output) is the master clock,
1398                 // so no input card (ie., cards[card_index].capture) is.
1399                 return false;
1400         }
1401         return (card_index == master_card_index);
1402 }
1403
1404 void Mixer::trim_queue(CaptureCard *card, size_t safe_queue_length)
1405 {
1406         // Count the number of frames in the queue, including any frames
1407         // we dropped. It's hard to know exactly how we should deal with
1408         // dropped (corrupted) input frames; they don't help our goal of
1409         // avoiding starvation, but they still add to the problem of latency.
1410         // Since dropped frames is going to mean a bump in the signal anyway,
1411         // we err on the side of having more stable latency instead.
1412         unsigned queue_length = 0;
1413         for (const CaptureCard::NewFrame &frame : card->new_frames) {
1414                 queue_length += frame.dropped_frames + 1;
1415         }
1416
1417         // If needed, drop frames until the queue is below the safe limit.
1418         // We prefer to drop from the head, because all else being equal,
1419         // we'd like more recent frames (less latency).
1420         unsigned dropped_frames = 0;
1421         while (queue_length > safe_queue_length) {
1422                 assert(!card->new_frames.empty());
1423                 assert(queue_length > card->new_frames.front().dropped_frames);
1424                 queue_length -= card->new_frames.front().dropped_frames;
1425
1426                 if (queue_length <= safe_queue_length) {
1427                         // No need to drop anything.
1428                         break;
1429                 }
1430
1431                 card->new_frames.pop_front();
1432                 card->new_frames_changed.notify_all();
1433                 --queue_length;
1434                 ++dropped_frames;
1435
1436                 if (queue_length == 0 && card->is_cef_capture) {
1437                         card->may_have_dropped_last_frame = true;
1438                 }
1439         }
1440
1441         card->metric_input_dropped_frames_jitter += dropped_frames;
1442         card->metric_input_queue_length_frames = queue_length;
1443
1444 #if 0
1445         if (dropped_frames > 0) {
1446                 fprintf(stderr, "Card %u dropped %u frame(s) to keep latency down.\n",
1447                         card_index, dropped_frames);
1448         }
1449 #endif
1450 }
1451
1452 pair<string, string> Mixer::get_channels_json()
1453 {
1454         Channels ret;
1455         for (int channel_idx = 0; channel_idx < theme->get_num_channels(); ++channel_idx) {
1456                 Channel *channel = ret.add_channel();
1457                 channel->set_index(channel_idx + 2);
1458                 channel->set_name(theme->get_channel_name(channel_idx + 2));
1459                 channel->set_color(theme->get_channel_color(channel_idx + 2));
1460         }
1461         string contents;
1462         google::protobuf::util::MessageToJsonString(ret, &contents);  // Ignore any errors.
1463         return make_pair(contents, "text/json");
1464 }
1465
1466 pair<string, string> Mixer::get_channel_color_http(unsigned channel_idx)
1467 {
1468         return make_pair(theme->get_channel_color(channel_idx), "text/plain");
1469 }
1470
1471 Mixer::OutputFrameInfo Mixer::get_one_frame_from_each_card(unsigned master_card_index, bool master_card_is_output, CaptureCard::NewFrame new_frames[MAX_VIDEO_CARDS], bool has_new_frame[MAX_VIDEO_CARDS], vector<int32_t> raw_audio[MAX_VIDEO_CARDS])
1472 {
1473         OutputFrameInfo output_frame_info;
1474         constexpr steady_clock::duration master_card_timeout = milliseconds(100);
1475 start:
1476         unique_lock<mutex> lock(card_mutex, defer_lock);
1477         bool timed_out = false;
1478         if (master_card_is_output) {
1479                 // Clocked to the output, so wait for it to be ready for the next frame.
1480                 cards[master_card_index].output->wait_for_frame(pts_int, &output_frame_info.dropped_frames, &output_frame_info.frame_duration, &output_frame_info.is_preroll, &output_frame_info.frame_timestamp);
1481                 lock.lock();
1482         } else {
1483                 // Wait for the master card to have a new frame.
1484                 output_frame_info.is_preroll = false;
1485                 lock.lock();
1486                 timed_out = !cards[master_card_index].new_frames_changed.wait_for(lock,
1487                         master_card_timeout,
1488                         [this, master_card_index]{
1489                                 return !cards[master_card_index].new_frames.empty() ||
1490                                         cards[master_card_index].capture->get_disconnected();
1491                         });
1492                 if (timed_out) {
1493                         fprintf(stderr, "WARNING: Master card (%s) did not deliver a frame for 100 ms, creating a fake one.\n",
1494                                 description_for_card(master_card_index).c_str());
1495                 }
1496         }
1497
1498         if (timed_out) {
1499                 // The master card stalled for 100 ms (possible when it's e.g.
1500                 // an SRT card). Send a frame no matter what; this also makes sure
1501                 // any other cards get to empty their queues, and in general,
1502                 // that we make _some_ sort of forward progress.
1503                 handle_hotplugged_cards();
1504         } else if (master_card_is_output) {
1505                 handle_hotplugged_cards();
1506         } else if (cards[master_card_index].new_frames.empty()) {
1507                 // We were woken up, but not due to a new frame. Deal with it
1508                 // and then restart.
1509                 assert(cards[master_card_index].capture->get_disconnected());
1510                 handle_hotplugged_cards();
1511                 lock.unlock();
1512                 goto start;
1513         }
1514
1515         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1516                 CaptureCard *card = &cards[card_index];
1517                 if (card->new_frames.empty()) {  // Starvation.
1518                         ++card->metric_input_duped_frames;
1519 #ifdef HAVE_CEF
1520                         if (card->is_cef_capture && card->may_have_dropped_last_frame) {
1521                                 // Unlike other sources, CEF is not guaranteed to send us a steady
1522                                 // stream of frames, so we'll have to ask it to repaint the frame
1523                                 // we dropped. (may_have_dropped_last_frame is set whenever we
1524                                 // trim the queue completely away, and cleared when we actually
1525                                 // get a new frame.)
1526                                 ((CEFCapture *)card->capture.get())->request_new_frame(/*ignore_if_locked=*/true);
1527                         }
1528 #endif
1529                 } else {
1530                         new_frames[card_index] = move(card->new_frames.front());
1531                         has_new_frame[card_index] = true;
1532                         card->new_frames.pop_front();
1533                         card->new_frames_changed.notify_all();
1534                 }
1535
1536                 raw_audio[card_index] = move(card->new_raw_audio);
1537         }
1538
1539         if (timed_out) {
1540                 // Pretend the frame happened a while ago and was only processed now,
1541                 // so that we get the duration sort-of right. This isn't ideal.
1542                 output_frame_info.dropped_frames = 0;  // Hard to define, really.
1543                 output_frame_info.frame_duration = lrint(TIMEBASE * duration<double>(master_card_timeout).count());
1544                 output_frame_info.frame_timestamp = steady_clock::now() - master_card_timeout;
1545         } else if (!master_card_is_output) {
1546                 output_frame_info.frame_timestamp = new_frames[master_card_index].received_timestamp;
1547                 output_frame_info.dropped_frames = new_frames[master_card_index].dropped_frames;
1548                 output_frame_info.frame_duration = new_frames[master_card_index].length;
1549         }
1550
1551         if (!output_frame_info.is_preroll) {
1552                 output_jitter_history.frame_arrived(output_frame_info.frame_timestamp, output_frame_info.frame_duration, output_frame_info.dropped_frames);
1553         }
1554
1555         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1556                 CaptureCard *card = &cards[card_index];
1557                 if (has_new_frame[card_index] &&
1558                     !input_card_is_master_clock(card_index, master_card_index) &&
1559                     !output_frame_info.is_preroll) {
1560                         card->queue_length_policy.update_policy(
1561                                 output_frame_info.frame_timestamp,
1562                                 card->jitter_history.get_expected_next_frame(),
1563                                 new_frames[master_card_index].length,
1564                                 output_frame_info.frame_duration,
1565                                 card->jitter_history.estimate_max_jitter(),
1566                                 output_jitter_history.estimate_max_jitter());
1567                         trim_queue(card, min<int>(global_flags.max_input_queue_frames,
1568                                                   card->queue_length_policy.get_safe_queue_length()));
1569                 }
1570         }
1571
1572         // This might get off by a fractional sample when changing master card
1573         // between ones with different frame rates, but that's fine.
1574         int64_t num_samples_times_timebase = int64_t(OUTPUT_FREQUENCY) * output_frame_info.frame_duration + fractional_samples;
1575         output_frame_info.num_samples = num_samples_times_timebase / TIMEBASE;
1576         fractional_samples = num_samples_times_timebase % TIMEBASE;
1577         assert(output_frame_info.num_samples >= 0);
1578
1579         return output_frame_info;
1580 }
1581
1582 void Mixer::handle_hotplugged_cards()
1583 {
1584         // Check for cards that have been disconnected since last frame.
1585         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1586                 CaptureCard *card = &cards[card_index];
1587                 if (card->capture != nullptr && card->capture->get_disconnected()) {
1588                         fprintf(stderr, "Card %u went away, replacing with a fake card.\n", card_index);
1589                         FakeCapture *capture = new FakeCapture(global_flags.width, global_flags.height, FAKE_FPS, OUTPUT_FREQUENCY, card_index, global_flags.fake_cards_audio);
1590                         configure_card(card_index, capture, CardType::FAKE_CAPTURE, /*output=*/nullptr, /*is_srt_card=*/false);
1591                         card->queue_length_policy.reset(card_index);
1592                         card->capture->start_bm_capture();
1593                 }
1594         }
1595
1596         // Count how many active cards we already have. Used below to check that we
1597         // don't go past the max_cards limit set by the user. Note that (non-SRT) video
1598         // and HTML “cards” don't count towards this limit.
1599         int num_video_cards = 0;
1600         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1601                 CaptureCard *card = &cards[card_index];
1602                 if (card->type == CardType::LIVE_CARD || is_srt_card(card)) {
1603                         ++num_video_cards;
1604                 }
1605         }
1606
1607         // Check for cards that have been connected since last frame.
1608         vector<libusb_device *> hotplugged_cards_copy;
1609 #ifdef HAVE_SRT
1610         vector<int> hotplugged_srt_cards_copy;
1611 #endif
1612         {
1613                 lock_guard<mutex> lock(hotplug_mutex);
1614                 swap(hotplugged_cards, hotplugged_cards_copy);
1615 #ifdef HAVE_SRT
1616                 swap(hotplugged_srt_cards, hotplugged_srt_cards_copy);
1617 #endif
1618         }
1619         for (libusb_device *new_dev : hotplugged_cards_copy) {
1620                 // Look for a fake capture card where we can stick this in.
1621                 int free_card_index = -1;
1622                 for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1623                         if (cards[card_index].is_fake_capture) {
1624                                 free_card_index = card_index;
1625                                 break;
1626                         }
1627                 }
1628
1629                 if (free_card_index == -1 || num_video_cards >= global_flags.max_num_cards) {
1630                         fprintf(stderr, "New card plugged in, but no free slots -- ignoring.\n");
1631                         libusb_unref_device(new_dev);
1632                 } else {
1633                         // BMUSBCapture takes ownership.
1634                         fprintf(stderr, "New card plugged in, choosing slot %d.\n", free_card_index);
1635                         CaptureCard *card = &cards[free_card_index];
1636                         BMUSBCapture *capture = new BMUSBCapture(free_card_index, new_dev);
1637                         configure_card(free_card_index, capture, CardType::LIVE_CARD, /*output=*/nullptr, /*is_srt_card=*/false);
1638                         card->queue_length_policy.reset(free_card_index);
1639                         capture->set_card_disconnected_callback(bind(&Mixer::bm_hotplug_remove, this, free_card_index));
1640                         capture->start_bm_capture();
1641                 }
1642         }
1643
1644 #ifdef HAVE_SRT
1645         // Same, for SRT inputs.
1646         for (SRTSOCKET sock : hotplugged_srt_cards_copy) {
1647                 char name[256];
1648                 int namelen = sizeof(name);
1649                 srt_getsockopt(sock, /*ignored=*/0, SRTO_STREAMID, name, &namelen);
1650                 string stream_id(name, namelen);
1651
1652                 // Look for a fake capture card where we can stick this in.
1653                 // Prioritize ones that previously held SRT streams with the
1654                 // same stream ID, if any exist -- and it multiple exist,
1655                 // take the one that disconnected the last.
1656                 int first_free_card_index = -1, last_matching_free_card_index = -1;
1657                 for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1658                         CaptureCard *card = &cards[card_index];
1659                         if (!card->is_fake_capture) {
1660                                 continue;
1661                         }
1662                         if (first_free_card_index == -1) {
1663                                 first_free_card_index = card_index;
1664                         }
1665                         if (card->last_srt_stream_id == stream_id &&
1666                             (last_matching_free_card_index == -1 ||
1667                              card->fake_capture_counter >
1668                                 cards[last_matching_free_card_index].fake_capture_counter)) {
1669                                 last_matching_free_card_index = card_index;
1670                         }
1671                 }
1672
1673                 const int free_card_index = (last_matching_free_card_index != -1)
1674                         ? last_matching_free_card_index : first_free_card_index;
1675                 if (free_card_index == -1 || num_video_cards >= global_flags.max_num_cards) {
1676                         if (stream_id.empty()) {
1677                                 stream_id = "no name";
1678                         }
1679                         fprintf(stderr, "New SRT stream connected (%s), but no free slots -- ignoring.\n", stream_id.c_str());
1680                         srt_close(sock);
1681                 } else {
1682                         // FFmpegCapture takes ownership.
1683                         if (stream_id.empty()) {
1684                                 fprintf(stderr, "New unnamed SRT stream connected, choosing slot %d.\n", free_card_index);
1685                         } else {
1686                                 fprintf(stderr, "New SRT stream connected (%s), choosing slot %d.\n", stream_id.c_str(), free_card_index);
1687                         }
1688                         CaptureCard *card = &cards[free_card_index];
1689                         FFmpegCapture *capture = new FFmpegCapture(sock, stream_id);
1690                         capture->set_card_index(free_card_index);
1691                         configure_card(free_card_index, capture, CardType::FFMPEG_INPUT, /*output=*/nullptr, /*is_srt_card=*/true);
1692                         update_srt_stats(sock, card);  // Initial zero stats.
1693                         card->last_srt_stream_id = stream_id;
1694                         card->queue_length_policy.reset(free_card_index);
1695                         capture->set_card_disconnected_callback(bind(&Mixer::bm_hotplug_remove, this, free_card_index));
1696                         capture->start_bm_capture();
1697                 }
1698         }
1699 #endif
1700
1701         // Finally, newly forced-to-active fake capture cards.
1702         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1703                 CaptureCard *card = &cards[card_index];
1704                 if (card->capture == nullptr && card->force_active) {
1705                         FakeCapture *capture = new FakeCapture(global_flags.width, global_flags.height, FAKE_FPS, OUTPUT_FREQUENCY, card_index, global_flags.fake_cards_audio);
1706                         configure_card(card_index, capture, CardType::FAKE_CAPTURE, /*output=*/nullptr, /*is_srt_card=*/false);
1707                         card->queue_length_policy.reset(card_index);
1708                         card->capture->start_bm_capture();
1709                 }
1710         }
1711 }
1712
1713
1714 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame, bool is_preroll, steady_clock::time_point frame_timestamp)
1715 {
1716         // Resample the audio as needed, including from previously dropped frames.
1717         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
1718                 const bool dropped_frame = (frame_num != dropped_frames);
1719                 {
1720                         // Signal to the audio thread to process this frame.
1721                         // Note that if the frame is a dropped frame, we signal that
1722                         // we don't want to use this frame as base for adjusting
1723                         // the resampler rate. The reason for this is that the timing
1724                         // of these frames is often way too late; they typically don't
1725                         // “arrive” before we synthesize them. Thus, we could end up
1726                         // in a situation where we have inserted e.g. five audio frames
1727                         // into the queue before we then start pulling five of them
1728                         // back out. This makes ResamplingQueue overestimate the delay,
1729                         // causing undue resampler changes. (We _do_ use the last,
1730                         // non-dropped frame; perhaps we should just discard that as well,
1731                         // since dropped frames are expected to be rare, and it might be
1732                         // better to just wait until we have a slightly more normal situation).
1733                         lock_guard<mutex> lock(audio_mutex);
1734                         bool adjust_rate = !dropped_frame && !is_preroll;
1735                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame, adjust_rate, frame_timestamp});
1736                         audio_task_queue_changed.notify_one();
1737                 }
1738                 if (dropped_frame) {
1739                         // For dropped frames, increase the pts. Note that if the format changed
1740                         // in the meantime, we have no way of detecting that; we just have to
1741                         // assume the frame length is always the same.
1742                         pts_int += length_per_frame;
1743                 }
1744         }
1745 }
1746
1747 void Mixer::render_one_frame(int64_t duration)
1748 {
1749         // Determine the time code for this frame before we start rendering.
1750         string timecode_text = timecode_renderer->get_timecode_text(double(pts_int) / TIMEBASE, frame_num);
1751         if (display_timecode_on_stdout) {
1752                 printf("Timecode: '%s'\n", timecode_text.c_str());
1753         }
1754
1755         // Update Y'CbCr settings for all cards.
1756         {
1757                 lock_guard<mutex> lock(card_mutex);
1758                 for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
1759                         YCbCrInterpretation *interpretation = &ycbcr_interpretation[card_index];
1760                         input_state.ycbcr_coefficients_auto[card_index] = interpretation->ycbcr_coefficients_auto;
1761                         input_state.ycbcr_coefficients[card_index] = interpretation->ycbcr_coefficients;
1762                         input_state.full_range[card_index] = interpretation->full_range;
1763                 }
1764         }
1765
1766         // Get the main chain from the theme, and set its state immediately.
1767         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), global_flags.width, global_flags.height, input_state);
1768         EffectChain *chain = theme_main_chain.chain;
1769         theme_main_chain.setup_chain();
1770         //theme_main_chain.chain->enable_phase_timing(true);
1771
1772         // If HDMI/SDI output is active and the user has requested auto mode,
1773         // its mode overrides the existing Y'CbCr setting for the chain.
1774         YCbCrLumaCoefficients ycbcr_output_coefficients;
1775         if (global_flags.ycbcr_auto_coefficients && output_card_index != -1) {
1776                 ycbcr_output_coefficients = cards[output_card_index].output->preferred_ycbcr_coefficients();
1777         } else {
1778                 ycbcr_output_coefficients = global_flags.ycbcr_rec709_coefficients ? YCBCR_REC_709 : YCBCR_REC_601;
1779         }
1780
1781         // TODO: Reduce the duplication against theme.cpp.
1782         YCbCrFormat output_ycbcr_format;
1783         output_ycbcr_format.chroma_subsampling_x = 1;
1784         output_ycbcr_format.chroma_subsampling_y = 1;
1785         output_ycbcr_format.luma_coefficients = ycbcr_output_coefficients;
1786         output_ycbcr_format.full_range = false;
1787         output_ycbcr_format.num_levels = 1 << global_flags.x264_bit_depth;
1788         chain->change_ycbcr_output_format(output_ycbcr_format);
1789
1790         // Render main chain. If we're using zerocopy Quick Sync encoding
1791         // (the default case), we take an extra copy of the created outputs,
1792         // so that we can display it back to the screen later (it's less memory
1793         // bandwidth than writing and reading back an RGBA texture, even at 16-bit).
1794         // Ideally, we'd like to avoid taking copies and just use the main textures
1795         // for display as well, but they're just views into VA-API memory and must be
1796         // unmapped during encoding, so we can't use them for display, unfortunately.
1797         GLuint y_tex, cbcr_full_tex, cbcr_tex;
1798         GLuint y_copy_tex, cbcr_copy_tex = 0;
1799         GLuint y_display_tex, cbcr_display_tex;
1800         GLenum y_type = (global_flags.x264_bit_depth > 8) ? GL_R16 : GL_R8;
1801         GLenum cbcr_type = (global_flags.x264_bit_depth > 8) ? GL_RG16 : GL_RG8;
1802         const bool is_zerocopy = video_encoder->is_zerocopy();
1803         if (is_zerocopy) {
1804                 cbcr_full_tex = resource_pool->create_2d_texture(cbcr_type, global_flags.width, global_flags.height);
1805                 y_copy_tex = resource_pool->create_2d_texture(y_type, global_flags.width, global_flags.height);
1806                 cbcr_copy_tex = resource_pool->create_2d_texture(cbcr_type, global_flags.width / 2, global_flags.height / 2);
1807
1808                 y_display_tex = y_copy_tex;
1809                 cbcr_display_tex = cbcr_copy_tex;
1810
1811                 // y_tex and cbcr_tex will be given by VideoEncoder.
1812         } else {
1813                 cbcr_full_tex = resource_pool->create_2d_texture(cbcr_type, global_flags.width, global_flags.height);
1814                 y_tex = resource_pool->create_2d_texture(y_type, global_flags.width, global_flags.height);
1815                 cbcr_tex = resource_pool->create_2d_texture(cbcr_type, global_flags.width / 2, global_flags.height / 2);
1816
1817                 y_display_tex = y_tex;
1818                 cbcr_display_tex = cbcr_tex;
1819         }
1820
1821         const int64_t av_delay = lrint(global_flags.audio_queue_length_ms * 0.001 * TIMEBASE);  // Corresponds to the delay in ResamplingQueue.
1822         bool got_frame = video_encoder->begin_frame(pts_int + av_delay, duration, ycbcr_output_coefficients, theme_main_chain.input_frames, &y_tex, &cbcr_tex);
1823         assert(got_frame);
1824
1825         GLuint fbo;
1826         if (is_zerocopy) {
1827                 fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, y_copy_tex);
1828         } else {
1829                 fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex);
1830         }
1831         check_error();
1832         chain->render_to_fbo(fbo, global_flags.width, global_flags.height);
1833
1834         if (display_timecode_in_stream) {
1835                 // Render the timecode on top.
1836                 timecode_renderer->render_timecode(fbo, timecode_text);
1837         }
1838
1839         resource_pool->release_fbo(fbo);
1840
1841         if (is_zerocopy) {
1842                 chroma_subsampler->subsample_chroma(cbcr_full_tex, global_flags.width, global_flags.height, cbcr_tex, cbcr_copy_tex);
1843         } else {
1844                 chroma_subsampler->subsample_chroma(cbcr_full_tex, global_flags.width, global_flags.height, cbcr_tex);
1845         }
1846         if (output_card_index != -1) {
1847                 cards[output_card_index].output->send_frame(y_tex, cbcr_full_tex, ycbcr_output_coefficients, theme_main_chain.input_frames, pts_int, duration);
1848         }
1849         resource_pool->release_2d_texture(cbcr_full_tex);
1850
1851         // Set the right state for the Y' and CbCr textures we use for display.
1852         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1853         glBindTexture(GL_TEXTURE_2D, y_display_tex);
1854         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1855         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1856         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1857
1858         glBindTexture(GL_TEXTURE_2D, cbcr_display_tex);
1859         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1860         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1861         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1862
1863         RefCountedGLsync fence = video_encoder->end_frame();
1864
1865         // The live frame pieces the Y'CbCr texture copies back into RGB and displays them.
1866         // It owns y_display_tex and cbcr_display_tex now (whichever textures they are).
1867         DisplayFrame live_frame;
1868         live_frame.chain = display_chain.get();
1869         live_frame.setup_chain = [this, y_display_tex, cbcr_display_tex]{
1870                 display_input->set_texture_num(0, y_display_tex);
1871                 display_input->set_texture_num(1, cbcr_display_tex);
1872         };
1873         live_frame.ready_fence = fence;
1874         live_frame.input_frames = {};
1875         live_frame.temp_textures = { y_display_tex, cbcr_display_tex };
1876         output_channel[OUTPUT_LIVE].output_frame(move(live_frame));
1877
1878         // Set up preview and any additional channels.
1879         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
1880                 DisplayFrame display_frame;
1881                 Theme::Chain chain = theme->get_chain(i, pts(), global_flags.width, global_flags.height, input_state);  // FIXME: dimensions
1882                 display_frame.chain = move(chain.chain);
1883                 display_frame.setup_chain = move(chain.setup_chain);
1884                 display_frame.ready_fence = fence;
1885                 display_frame.input_frames = move(chain.input_frames);
1886                 display_frame.temp_textures = {};
1887                 output_channel[i].output_frame(move(display_frame));
1888         }
1889 }
1890
1891 void Mixer::audio_thread_func()
1892 {
1893         pthread_setname_np(pthread_self(), "Mixer_Audio");
1894
1895         while (!should_quit) {
1896                 AudioTask task;
1897
1898                 {
1899                         unique_lock<mutex> lock(audio_mutex);
1900                         audio_task_queue_changed.wait(lock, [this]{ return should_quit || !audio_task_queue.empty(); });
1901                         if (should_quit) {
1902                                 return;
1903                         }
1904                         task = audio_task_queue.front();
1905                         audio_task_queue.pop();
1906                 }
1907
1908                 ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy =
1909                         task.adjust_rate ? ResamplingQueue::ADJUST_RATE : ResamplingQueue::DO_NOT_ADJUST_RATE;
1910                 vector<float> samples_out = audio_mixer->get_output(
1911                         task.frame_timestamp,
1912                         task.num_samples,
1913                         rate_adjustment_policy);
1914
1915                 // Send the samples to the sound card, then add them to the output.
1916                 if (alsa) {
1917                         alsa->write(samples_out);
1918                 }
1919                 if (output_card_index != -1) {
1920                         const int64_t av_delay = lrint(global_flags.audio_queue_length_ms * 0.001 * TIMEBASE);  // Corresponds to the delay in ResamplingQueue.
1921                         cards[output_card_index].output->send_audio(task.pts_int + av_delay, samples_out);
1922                 }
1923                 video_encoder->add_audio(task.pts_int, move(samples_out));
1924         }
1925 }
1926
1927 void Mixer::release_display_frame(DisplayFrame *frame)
1928 {
1929         for (GLuint texnum : frame->temp_textures) {
1930                 resource_pool->release_2d_texture(texnum);
1931         }
1932         frame->temp_textures.clear();
1933         frame->ready_fence.reset();
1934         frame->input_frames.clear();
1935 }
1936
1937 void Mixer::start()
1938 {
1939         mixer_thread = thread(&Mixer::thread_func, this);
1940         audio_thread = thread(&Mixer::audio_thread_func, this);
1941 }
1942
1943 void Mixer::quit()
1944 {
1945         should_quit = true;
1946         audio_task_queue_changed.notify_one();
1947         mixer_thread.join();
1948         audio_thread.join();
1949 #ifdef HAVE_SRT
1950         if (global_flags.srt_port >= 0) {
1951                 // There's seemingly no other reasonable way to wake up the thread
1952                 // (libsrt's epoll equivalent is busy-waiting).
1953                 int sock = srt_socket(AF_INET6, 0, 0);
1954                 if (sock != -1) {
1955                         sockaddr_in6 addr;
1956                         memset(&addr, 0, sizeof(addr));
1957                         addr.sin6_family = AF_INET6;
1958                         addr.sin6_addr = IN6ADDR_LOOPBACK_INIT;
1959                         addr.sin6_port = htons(global_flags.srt_port);
1960                         srt_connect(sock, (sockaddr *)&addr, sizeof(addr));
1961                         srt_close(sock);
1962                 }
1963                 srt_thread.join();
1964         }
1965 #endif
1966 }
1967
1968 void Mixer::transition_clicked(int transition_num)
1969 {
1970         theme->transition_clicked(transition_num, pts());
1971 }
1972
1973 void Mixer::channel_clicked(int preview_num)
1974 {
1975         theme->channel_clicked(preview_num);
1976 }
1977
1978 YCbCrInterpretation Mixer::get_input_ycbcr_interpretation(unsigned card_index) const
1979 {
1980         lock_guard<mutex> lock(card_mutex);
1981         return ycbcr_interpretation[card_index];
1982 }
1983
1984 void Mixer::set_input_ycbcr_interpretation(unsigned card_index, const YCbCrInterpretation &interpretation)
1985 {
1986         lock_guard<mutex> lock(card_mutex);
1987         ycbcr_interpretation[card_index] = interpretation;
1988 }
1989
1990 void Mixer::start_mode_scanning(unsigned card_index)
1991 {
1992         assert(card_index < MAX_VIDEO_CARDS);
1993         if (cards[card_index].capture != nullptr) {
1994                 // Inactive card. Should never happen.
1995                 return;
1996         }
1997         if (is_mode_scanning[card_index]) {
1998                 return;
1999         }
2000         is_mode_scanning[card_index] = true;
2001         mode_scanlist[card_index].clear();
2002         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
2003                 mode_scanlist[card_index].push_back(mode.first);
2004         }
2005         assert(!mode_scanlist[card_index].empty());
2006         mode_scanlist_index[card_index] = 0;
2007         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
2008         last_mode_scan_change[card_index] = steady_clock::now();
2009 }
2010
2011 map<uint32_t, VideoMode> Mixer::get_available_output_video_modes() const
2012 {
2013         assert(desired_output_card_index != -1);
2014         lock_guard<mutex> lock(card_mutex);
2015         return cards[desired_output_card_index].output->get_available_video_modes();
2016 }
2017
2018 string Mixer::get_ffmpeg_filename(unsigned card_index) const
2019 {
2020         assert(card_index < MAX_VIDEO_CARDS);
2021         assert(cards[card_index].type == CardType::FFMPEG_INPUT);
2022         return ((FFmpegCapture *)(cards[card_index].capture.get()))->get_filename();
2023 }
2024
2025 void Mixer::set_ffmpeg_filename(unsigned card_index, const string &filename) {
2026         assert(card_index < MAX_VIDEO_CARDS);
2027         assert(cards[card_index].type == CardType::FFMPEG_INPUT);
2028         ((FFmpegCapture *)(cards[card_index].capture.get()))->change_filename(filename);
2029 }
2030
2031 void Mixer::wait_for_next_frame()
2032 {
2033         unique_lock<mutex> lock(frame_num_mutex);
2034         unsigned old_frame_num = frame_num;
2035         frame_num_updated.wait_for(lock, seconds(1),  // Timeout is just in case.
2036                 [old_frame_num, this]{ return this->frame_num > old_frame_num; });
2037 }
2038
2039 Mixer::OutputChannel::~OutputChannel()
2040 {
2041         if (has_current_frame) {
2042                 parent->release_display_frame(&current_frame);
2043         }
2044         if (has_ready_frame) {
2045                 parent->release_display_frame(&ready_frame);
2046         }
2047 }
2048
2049 void Mixer::OutputChannel::output_frame(DisplayFrame &&frame)
2050 {
2051         // Store this frame for display. Remove the ready frame if any
2052         // (it was seemingly never used).
2053         {
2054                 lock_guard<mutex> lock(frame_mutex);
2055                 if (has_ready_frame) {
2056                         parent->release_display_frame(&ready_frame);
2057                 }
2058                 ready_frame = move(frame);
2059                 has_ready_frame = true;
2060
2061                 // Call the callbacks under the mutex (they should be short),
2062                 // so that we don't race against a callback removal.
2063                 for (const auto &key_and_callback : new_frame_ready_callbacks) {
2064                         key_and_callback.second();
2065                 }
2066         }
2067
2068         // Reduce the number of callbacks by filtering duplicates. The reason
2069         // why we bother doing this is that Qt seemingly can get into a state
2070         // where its builds up an essentially unbounded queue of signals,
2071         // consuming more and more memory, and there's no good way of collapsing
2072         // user-defined signals or limiting the length of the queue.
2073         if (transition_names_updated_callback) {
2074                 vector<string> transition_names = global_mixer->get_transition_names();
2075                 bool changed = false;
2076                 if (transition_names.size() != last_transition_names.size()) {
2077                         changed = true;
2078                 } else {
2079                         for (unsigned i = 0; i < transition_names.size(); ++i) {
2080                                 if (transition_names[i] != last_transition_names[i]) {
2081                                         changed = true;
2082                                         break;
2083                                 }
2084                         }
2085                 }
2086                 if (changed) {
2087                         transition_names_updated_callback(transition_names);
2088                         last_transition_names = transition_names;
2089                 }
2090         }
2091         if (name_updated_callback) {
2092                 string name = global_mixer->get_channel_name(channel);
2093                 if (name != last_name) {
2094                         name_updated_callback(name);
2095                         last_name = name;
2096                 }
2097         }
2098         if (color_updated_callback) {
2099                 string color = global_mixer->get_channel_color(channel);
2100                 if (color != last_color) {
2101                         color_updated_callback(color);
2102                         last_color = color;
2103                 }
2104         }
2105 }
2106
2107 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
2108 {
2109         lock_guard<mutex> lock(frame_mutex);
2110         if (!has_current_frame && !has_ready_frame) {
2111                 return false;
2112         }
2113
2114         if (has_current_frame && has_ready_frame) {
2115                 // We have a new ready frame. Toss the current one.
2116                 parent->release_display_frame(&current_frame);
2117                 has_current_frame = false;
2118         }
2119         if (has_ready_frame) {
2120                 assert(!has_current_frame);
2121                 current_frame = move(ready_frame);
2122                 ready_frame.ready_fence.reset();  // Drop the refcount.
2123                 ready_frame.input_frames.clear();  // Drop the refcounts.
2124                 has_current_frame = true;
2125                 has_ready_frame = false;
2126         }
2127
2128         *frame = current_frame;
2129         return true;
2130 }
2131
2132 void Mixer::OutputChannel::add_frame_ready_callback(void *key, Mixer::new_frame_ready_callback_t callback)
2133 {
2134         lock_guard<mutex> lock(frame_mutex);
2135         new_frame_ready_callbacks[key] = callback;
2136 }
2137
2138 void Mixer::OutputChannel::remove_frame_ready_callback(void *key)
2139 {
2140         lock_guard<mutex> lock(frame_mutex);
2141         new_frame_ready_callbacks.erase(key);
2142 }
2143
2144 void Mixer::OutputChannel::set_transition_names_updated_callback(Mixer::transition_names_updated_callback_t callback)
2145 {
2146         transition_names_updated_callback = callback;
2147 }
2148
2149 void Mixer::OutputChannel::set_name_updated_callback(Mixer::name_updated_callback_t callback)
2150 {
2151         name_updated_callback = callback;
2152 }
2153
2154 void Mixer::OutputChannel::set_color_updated_callback(Mixer::color_updated_callback_t callback)
2155 {
2156         color_updated_callback = callback;
2157 }
2158
2159 #ifdef HAVE_SRT
2160 void Mixer::start_srt()
2161 {
2162         SRTSOCKET sock = srt_socket(AF_INET6, 0, 0);
2163         sockaddr_in6 addr;
2164         memset(&addr, 0, sizeof(addr));
2165         addr.sin6_family = AF_INET6;
2166         addr.sin6_port = htons(global_flags.srt_port);
2167
2168         int err = srt_bind(sock, (sockaddr *)&addr, sizeof(addr));
2169         if (err != 0) {
2170                 fprintf(stderr, "srt_bind: %s\n", srt_getlasterror_str());
2171                 abort();
2172         }
2173         err = srt_listen(sock, MAX_VIDEO_CARDS);
2174         if (err != 0) {
2175                 fprintf(stderr, "srt_listen: %s\n", srt_getlasterror_str());
2176                 abort();
2177         }
2178
2179         srt_thread = thread([this, sock] {
2180                 sockaddr_in6 addr;
2181                 for ( ;; ) {
2182                         int sa_len = sizeof(addr);
2183                         int clientsock = srt_accept(sock, (sockaddr *)&addr, &sa_len);
2184                         if (should_quit) {
2185                                 if (clientsock != -1) {
2186                                         srt_close(clientsock);
2187                                 }
2188                                 break;
2189                         }
2190                         if (!global_flags.enable_srt) {  // Runtime UI toggle.
2191                                 // Perhaps not as good as never listening in the first place,
2192                                 // but much simpler to turn on and off.
2193                                 srt_close(clientsock);
2194                                 continue;
2195                         }
2196                         lock_guard<mutex> lock(hotplug_mutex);
2197                         hotplugged_srt_cards.push_back(clientsock);
2198                 }
2199                 srt_close(sock);
2200         });
2201 }
2202 #endif
2203
2204 #ifdef HAVE_SRT
2205 void Mixer::update_srt_stats(int srt_sock, Mixer::CaptureCard *card)
2206 {
2207         SRT_TRACEBSTATS stats;
2208         srt_bistats(srt_sock, &stats, /*clear=*/0, /*instantaneous=*/1);
2209
2210         card->metric_srt_uptime_seconds = stats.msTimeStamp * 1e-3;
2211         card->metric_srt_send_duration_seconds = stats.usSndDurationTotal * 1e-6;
2212         card->metric_srt_sent_bytes = stats.byteSentTotal;
2213         card->metric_srt_received_bytes = stats.byteRecvTotal;
2214         card->metric_srt_sent_packets_normal = stats.pktSentTotal;
2215         card->metric_srt_received_packets_normal = stats.pktRecvTotal;
2216         card->metric_srt_sent_packets_lost = stats.pktSndLossTotal;
2217         card->metric_srt_received_packets_lost = stats.pktRcvLossTotal;
2218         card->metric_srt_sent_packets_retransmitted = stats.pktRetransTotal;
2219         card->metric_srt_sent_bytes_retransmitted = stats.byteRetransTotal;
2220         card->metric_srt_sent_packets_ack = stats.pktSentACKTotal;
2221         card->metric_srt_received_packets_ack = stats.pktRecvACKTotal;
2222         card->metric_srt_sent_packets_nak = stats.pktSentNAKTotal;
2223         card->metric_srt_received_packets_nak = stats.pktRecvNAKTotal;
2224         card->metric_srt_sent_packets_dropped = stats.pktSndDropTotal;
2225         card->metric_srt_received_packets_dropped = stats.pktRcvDropTotal;
2226         card->metric_srt_sent_bytes_dropped = stats.byteSndDropTotal;
2227         card->metric_srt_received_bytes_dropped = stats.byteRcvDropTotal;
2228         card->metric_srt_received_packets_undecryptable = stats.pktRcvUndecryptTotal;
2229         card->metric_srt_received_bytes_undecryptable = stats.byteRcvUndecryptTotal;
2230         card->metric_srt_filter_sent_packets = stats.pktSndFilterExtraTotal;
2231         card->metric_srt_filter_received_extra_packets = stats.pktRcvFilterExtraTotal;
2232         card->metric_srt_filter_received_rebuilt_packets = stats.pktRcvFilterSupplyTotal;
2233         card->metric_srt_filter_received_lost_packets = stats.pktRcvFilterLossTotal;
2234
2235         // Gauges.
2236         card->metric_srt_packet_sending_period_seconds = stats.usPktSndPeriod * 1e-6;
2237         card->metric_srt_flow_window_packets = stats.pktFlowWindow;
2238         card->metric_srt_congestion_window_packets = stats.pktCongestionWindow;
2239         card->metric_srt_flight_size_packets = stats.pktFlightSize;
2240         card->metric_srt_rtt_seconds = stats.msRTT * 1e-3;
2241         card->metric_srt_estimated_bandwidth_bits_per_second = stats.mbpsBandwidth * 1e6;
2242         card->metric_srt_bandwidth_ceiling_bits_per_second = stats.mbpsMaxBW * 1e6;
2243         card->metric_srt_send_buffer_available_bytes = stats.byteAvailSndBuf;
2244         card->metric_srt_receive_buffer_available_bytes = stats.byteAvailRcvBuf;
2245         card->metric_srt_mss_bytes = stats.byteMSS;
2246         card->metric_srt_sender_unacked_packets = stats.pktSndBuf;
2247         card->metric_srt_sender_unacked_bytes = stats.byteSndBuf;
2248         card->metric_srt_sender_unacked_timespan_seconds = stats.msSndBuf * 1e-3;
2249         card->metric_srt_sender_delivery_delay_seconds = stats.msSndTsbPdDelay * 1e-3;
2250         card->metric_srt_receiver_unacked_packets = stats.pktRcvBuf;
2251         card->metric_srt_receiver_unacked_bytes = stats.byteRcvBuf;
2252         card->metric_srt_receiver_unacked_timespan_seconds = stats.msRcvBuf * 1e-3;
2253         card->metric_srt_receiver_delivery_delay_seconds = stats.msRcvTsbPdDelay * 1e-3;
2254 }
2255 #endif
2256
2257 string Mixer::description_for_card(unsigned card_index)
2258 {
2259         CaptureCard *card = &cards[card_index];
2260         if (card->capture == nullptr) {
2261                 // Should never be called for inactive cards, but OK.
2262                 char buf[256];
2263                 snprintf(buf, sizeof(buf), "Inactive capture card %u", card_index);
2264                 return buf;
2265         }
2266         if (card->type != CardType::FFMPEG_INPUT) {
2267                 char buf[256];
2268                 snprintf(buf, sizeof(buf), "Capture card %u (%s)", card_index, card->capture->get_description().c_str());
2269                 return buf;
2270         }
2271
2272         // Number (non-SRT) FFmpeg inputs from zero, separately from the capture cards,
2273         // since it's not too obvious for the user that they are “cards”.
2274         unsigned ffmpeg_index = 0;
2275         for (unsigned i = 0; i < card_index; ++i) {
2276                 CaptureCard *other_card = &cards[i];
2277                 if (other_card->type == CardType::FFMPEG_INPUT && !is_srt_card(other_card)) {
2278                         ++ffmpeg_index;
2279                 }
2280         }
2281         char buf[256];
2282         snprintf(buf, sizeof(buf), "Video input %u (%s)", ffmpeg_index, card->capture->get_description().c_str());
2283         return buf;
2284 }
2285
2286 bool Mixer::is_srt_card(const Mixer::CaptureCard *card)
2287 {
2288 #ifdef HAVE_SRT
2289         if (card->type == CardType::FFMPEG_INPUT) {
2290                 int srt_sock = static_cast<FFmpegCapture *>(card->capture.get())->get_srt_sock();
2291                 return srt_sock != -1;
2292         }
2293 #endif
2294         return false;
2295 }
2296
2297 mutex RefCountedGLsync::fence_lock;