]> git.sesse.net Git - bmusb/blob - bmusb.cpp
Support hotplugging existing devices.
[bmusb] / bmusb.cpp
1 // Intensity Shuttle USB3 capture driver, v0.4
2 // Can download 8-bit and 10-bit UYVY/v210 frames from HDMI, quite stable
3 // (can do captures for hours at a time with no drops), except during startup
4 // 576p60/720p60/1080i60 works, 1080p60 does not work (firmware limitation)
5 // Audio comes out as 8-channel 24-bit raw audio.
6
7 #if (defined(__i386__) || defined(__x86_64__)) && defined(__GNUC__)
8 #define HAS_MULTIVERSIONING 1
9 #endif
10
11 #include <assert.h>
12 #include <errno.h>
13 #include <libusb.h>
14 #include <unistd.h>
15 #include <netinet/in.h>
16 #include <sched.h>
17 #include <stdint.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #if HAS_MULTIVERSIONING
22 #include <immintrin.h>
23 #endif
24 #include "bmusb/bmusb.h"
25
26 #include <algorithm>
27 #include <atomic>
28 #include <condition_variable>
29 #include <cstddef>
30 #include <cstdint>
31 #include <deque>
32 #include <functional>
33 #include <memory>
34 #include <mutex>
35 #include <stack>
36 #include <string>
37 #include <thread>
38
39 using namespace std;
40 using namespace std::placeholders;
41
42 #define USB_VENDOR_BLACKMAGIC 0x1edb
43 #define MIN_WIDTH 640
44 #define HEADER_SIZE 44
45 //#define HEADER_SIZE 0
46 #define AUDIO_HEADER_SIZE 4
47
48 #define FRAME_SIZE (8 << 20)  // 8 MB.
49 #define USB_VIDEO_TRANSFER_SIZE (128 << 10)  // 128 kB.
50
51 namespace bmusb {
52
53 card_connected_callback_t BMUSBCapture::card_connected_callback = nullptr;
54 bool BMUSBCapture::hotplug_existing_devices = false;
55
56 namespace {
57
58 FILE *audiofp;
59
60 thread usb_thread;
61 atomic<bool> should_quit;
62
63 int find_xfer_size_for_width(int width)
64 {
65         // Video seems to require isochronous packets scaled with the width;
66         // seemingly six lines is about right, rounded up to the required 1kB
67         // multiple.
68         int size = width * 2 * 6;
69         // Note that for 10-bit input, you'll need to increase size accordingly.
70         //size = size * 4 / 3;
71         if (size % 1024 != 0) {
72                 size &= ~1023;
73                 size += 1024;
74         }
75         return size;
76 }
77
78 void change_xfer_size_for_width(int width, libusb_transfer *xfr)
79 {
80         assert(width >= MIN_WIDTH);
81         size_t size = find_xfer_size_for_width(width);
82         int num_iso_pack = xfr->length / size;
83         if (num_iso_pack != xfr->num_iso_packets ||
84             size != xfr->iso_packet_desc[0].length) {
85                 xfr->num_iso_packets = num_iso_pack;
86                 libusb_set_iso_packet_lengths(xfr, size);
87         }
88 }
89
90 struct VideoFormatEntry {
91         uint16_t normalized_video_format;
92         unsigned width, height, second_field_start;
93         unsigned extra_lines_top, extra_lines_bottom;
94         unsigned frame_rate_nom, frame_rate_den;
95         bool interlaced;
96 };
97
98 // Get details for the given video format; returns false if detection was incomplete.
99 bool decode_video_format(uint16_t video_format, VideoFormat *decoded_video_format)
100 {
101         decoded_video_format->id = video_format;
102         decoded_video_format->interlaced = false;
103
104         // TODO: Add these for all formats as we find them.
105         decoded_video_format->extra_lines_top = decoded_video_format->extra_lines_bottom = decoded_video_format->second_field_start = 0;
106
107         if (video_format == 0x0800) {
108                 // No video signal. These green pseudo-frames seem to come at about 30.13 Hz.
109                 // It's a strange thing, but what can you do.
110                 decoded_video_format->width = 720;
111                 decoded_video_format->height = 525;
112                 decoded_video_format->extra_lines_top = 0;
113                 decoded_video_format->extra_lines_bottom = 0;
114                 decoded_video_format->frame_rate_nom = 3013;
115                 decoded_video_format->frame_rate_den = 100;
116                 decoded_video_format->has_signal = false;
117                 return true;
118         }
119         if ((video_format & 0xe800) != 0xe800) {
120                 printf("Video format 0x%04x does not appear to be a video format. Assuming 60 Hz.\n",
121                         video_format);
122                 decoded_video_format->width = 0;
123                 decoded_video_format->height = 0;
124                 decoded_video_format->extra_lines_top = 0;
125                 decoded_video_format->extra_lines_bottom = 0;
126                 decoded_video_format->frame_rate_nom = 60;
127                 decoded_video_format->frame_rate_den = 1;
128                 decoded_video_format->has_signal = false;
129                 return false;
130         }
131
132         decoded_video_format->has_signal = true;
133
134         // NTSC (480i59.94, I suppose). A special case, see below.
135         if (video_format == 0xe901 || video_format == 0xe9c1 || video_format == 0xe801) {
136                 decoded_video_format->width = 720;
137                 decoded_video_format->height = 480;
138                 decoded_video_format->extra_lines_top = 17;
139                 decoded_video_format->extra_lines_bottom = 28;
140                 decoded_video_format->frame_rate_nom = 30000;
141                 decoded_video_format->frame_rate_den = 1001;
142                 decoded_video_format->second_field_start = 280;
143                 decoded_video_format->interlaced = true;
144                 return true;
145         }
146
147         // PAL (576i50, I suppose). A special case, see below.
148         if (video_format == 0xe909 || video_format == 0xe9c9 || video_format == 0xe809 || video_format == 0xebe9 || video_format == 0xebe1) {
149                 decoded_video_format->width = 720;
150                 decoded_video_format->height = 576;
151                 decoded_video_format->extra_lines_top = 22;
152                 decoded_video_format->extra_lines_bottom = 27;
153                 decoded_video_format->frame_rate_nom = 25;
154                 decoded_video_format->frame_rate_den = 1;
155                 decoded_video_format->second_field_start = 335;
156                 decoded_video_format->interlaced = true;
157                 return true;
158         }
159
160         // 0x8 seems to be a flag about availability of deep color on the input,
161         // except when it's not (e.g. it's the only difference between NTSC
162         // and PAL). Rather confusing. But we clear it here nevertheless, because
163         // usually it doesn't mean anything.
164         //
165         // 0x4 is a flag I've only seen from the D4. I don't know what it is.
166         uint16_t normalized_video_format = video_format & ~0xe80c;
167         constexpr VideoFormatEntry entries[] = {
168                 { 0x01f1,  720,  480,   0, 40,  5, 60000, 1001, false },  // 480p59.94 (believed).
169                 { 0x0131,  720,  576,   0, 44,  5,    50,    1, false },  // 576p50.
170                 { 0x0011,  720,  576,   0, 44,  5,    50,    1, false },  // 576p50 (5:4).
171                 { 0x0143, 1280,  720,   0, 25,  5,    50,    1, false },  // 720p50.
172                 { 0x0103, 1280,  720,   0, 25,  5,    60,    1, false },  // 720p60.
173                 { 0x0125, 1280,  720,   0, 25,  5,    60,    1, false },  // 720p60.
174                 { 0x0121, 1280,  720,   0, 25,  5, 60000, 1001, false },  // 720p59.94.
175                 { 0x01c3, 1920, 1080,   0,  0,  0,    30,    1, false },  // 1080p30.
176                 { 0x0003, 1920, 1080, 583, 20, 25,    30,    1,  true },  // 1080i60.
177                 { 0x01e1, 1920, 1080,   0,  0,  0, 30000, 1001, false },  // 1080p29.97.
178                 { 0x0021, 1920, 1080, 583, 20, 25, 30000, 1001,  true },  // 1080i59.94.
179                 { 0x0063, 1920, 1080,   0,  0,  0,    25,    1, false },  // 1080p25.
180                 { 0x0043, 1920, 1080,   0,  0,  0,    25,    1,  true },  // 1080p50.
181                 { 0x008e, 1920, 1080,   0,  0,  0,    24,    1, false },  // 1080p24.
182                 { 0x00a1, 1920, 1080,   0,  0,  0, 24000, 1001, false },  // 1080p23.98.
183         };
184         for (const VideoFormatEntry &entry : entries) {
185                 if (normalized_video_format == entry.normalized_video_format) {
186                         decoded_video_format->width = entry.width;
187                         decoded_video_format->height = entry.height;
188                         decoded_video_format->second_field_start = entry.second_field_start;
189                         decoded_video_format->extra_lines_top = entry.extra_lines_top;
190                         decoded_video_format->extra_lines_bottom = entry.extra_lines_bottom;
191                         decoded_video_format->frame_rate_nom = entry.frame_rate_nom;
192                         decoded_video_format->frame_rate_den = entry.frame_rate_den;
193                         decoded_video_format->interlaced = entry.interlaced;
194                         return true;
195                 }
196         }
197
198         printf("Unknown video format 0x%04x (normalized 0x%04x). Assuming 720p60.\n", video_format, normalized_video_format);
199         decoded_video_format->width = 1280;
200         decoded_video_format->height = 720;
201         decoded_video_format->frame_rate_nom = 60;
202         decoded_video_format->frame_rate_den = 1;
203         return false;
204 }
205
206 }  // namespace
207
208 FrameAllocator::~FrameAllocator() {}
209
210 MallocFrameAllocator::MallocFrameAllocator(size_t frame_size, size_t num_queued_frames)
211         : frame_size(frame_size)
212 {
213         for (size_t i = 0; i < num_queued_frames; ++i) {
214                 freelist.push(unique_ptr<uint8_t[]>(new uint8_t[frame_size]));
215         }
216 }
217
218 FrameAllocator::Frame MallocFrameAllocator::alloc_frame()
219 {
220         Frame vf;
221         vf.owner = this;
222
223         unique_lock<mutex> lock(freelist_mutex);  // Meh.
224         if (freelist.empty()) {
225                 printf("Frame overrun (no more spare frames of size %ld), dropping frame!\n",
226                         frame_size);
227         } else {
228                 vf.data = freelist.top().release();
229                 vf.size = frame_size;
230                 freelist.pop();  // Meh.
231         }
232         return vf;
233 }
234
235 void MallocFrameAllocator::release_frame(Frame frame)
236 {
237         if (frame.overflow > 0) {
238                 printf("%d bytes overflow after last (malloc) frame\n", int(frame.overflow));
239         }
240         unique_lock<mutex> lock(freelist_mutex);
241         freelist.push(unique_ptr<uint8_t[]>(frame.data));
242 }
243
244 bool uint16_less_than_with_wraparound(uint16_t a, uint16_t b)
245 {
246         if (a == b) {
247                 return false;
248         } else if (a < b) {
249                 return (b - a < 0x8000);
250         } else {
251                 int wrap_b = 0x10000 + int(b);
252                 return (wrap_b - a < 0x8000);
253         }
254 }
255
256 void BMUSBCapture::queue_frame(uint16_t format, uint16_t timecode, FrameAllocator::Frame frame, deque<QueuedFrame> *q)
257 {
258         unique_lock<mutex> lock(queue_lock);
259         if (!q->empty() && !uint16_less_than_with_wraparound(q->back().timecode, timecode)) {
260                 printf("Blocks going backwards: prev=0x%04x, cur=0x%04x (dropped)\n",
261                         q->back().timecode, timecode);
262                 frame.owner->release_frame(frame);
263                 return;
264         }
265
266         QueuedFrame qf;
267         qf.format = format;
268         qf.timecode = timecode;
269         qf.frame = frame;
270         q->push_back(move(qf));
271         queues_not_empty.notify_one();  // might be spurious
272 }
273
274 void dump_frame(const char *filename, uint8_t *frame_start, size_t frame_len)
275 {
276         FILE *fp = fopen(filename, "wb");
277         if (fwrite(frame_start + HEADER_SIZE, frame_len - HEADER_SIZE, 1, fp) != 1) {
278                 printf("short write!\n");
279         }
280         fclose(fp);
281 }
282
283 void dump_audio_block(uint8_t *audio_start, size_t audio_len)
284 {
285         fwrite(audio_start + AUDIO_HEADER_SIZE, 1, audio_len - AUDIO_HEADER_SIZE, audiofp);
286 }
287
288 void BMUSBCapture::dequeue_thread_func()
289 {
290         if (has_dequeue_callbacks) {
291                 dequeue_init_callback();
292         }
293         while (!dequeue_thread_should_quit) {
294                 unique_lock<mutex> lock(queue_lock);
295                 queues_not_empty.wait(lock, [this]{ return dequeue_thread_should_quit || (!pending_video_frames.empty() && !pending_audio_frames.empty()); });
296
297                 if (dequeue_thread_should_quit) break;
298
299                 uint16_t video_timecode = pending_video_frames.front().timecode;
300                 uint16_t audio_timecode = pending_audio_frames.front().timecode;
301                 AudioFormat audio_format;
302                 audio_format.bits_per_sample = 24;
303                 audio_format.num_channels = 8;
304                 if (uint16_less_than_with_wraparound(video_timecode, audio_timecode)) {
305                         printf("Video block 0x%04x without corresponding audio block, dropping.\n",
306                                 video_timecode);
307                         QueuedFrame video_frame = pending_video_frames.front();
308                         pending_video_frames.pop_front();
309                         lock.unlock();
310                         video_frame_allocator->release_frame(video_frame.frame);
311                 } else if (uint16_less_than_with_wraparound(audio_timecode, video_timecode)) {
312                         printf("Audio block 0x%04x without corresponding video block, sending blank frame.\n",
313                                 audio_timecode);
314                         QueuedFrame audio_frame = pending_audio_frames.front();
315                         pending_audio_frames.pop_front();
316                         lock.unlock();
317                         audio_format.id = audio_frame.format;
318
319                         // Use the video format of the pending frame.
320                         QueuedFrame video_frame = pending_video_frames.front();
321                         VideoFormat video_format;
322                         decode_video_format(video_frame.format, &video_format);
323
324                         frame_callback(audio_timecode,
325                                        FrameAllocator::Frame(), 0, video_format,
326                                        audio_frame.frame, AUDIO_HEADER_SIZE, audio_format);
327                 } else {
328                         QueuedFrame video_frame = pending_video_frames.front();
329                         QueuedFrame audio_frame = pending_audio_frames.front();
330                         pending_audio_frames.pop_front();
331                         pending_video_frames.pop_front();
332                         lock.unlock();
333
334 #if 0
335                         char filename[255];
336                         snprintf(filename, sizeof(filename), "%04x%04x.uyvy", video_frame.format, video_timecode);
337                         dump_frame(filename, video_frame.frame.data, video_frame.data_len);
338                         dump_audio_block(audio_frame.frame.data, audio_frame.data_len); 
339 #endif
340
341                         VideoFormat video_format;
342                         audio_format.id = audio_frame.format;
343                         if (decode_video_format(video_frame.format, &video_format)) {
344                                 frame_callback(video_timecode,
345                                                video_frame.frame, HEADER_SIZE, video_format,
346                                                audio_frame.frame, AUDIO_HEADER_SIZE, audio_format);
347                         } else {
348                                 frame_callback(video_timecode,
349                                                FrameAllocator::Frame(), 0, video_format,
350                                                audio_frame.frame, AUDIO_HEADER_SIZE, audio_format);
351                         }
352                 }
353         }
354         if (has_dequeue_callbacks) {
355                 dequeue_cleanup_callback();
356         }
357 }
358
359 void BMUSBCapture::start_new_frame(const uint8_t *start)
360 {
361         uint16_t format = (start[3] << 8) | start[2];
362         uint16_t timecode = (start[1] << 8) | start[0];
363
364         if (current_video_frame.len > 0) {
365                 // If format is 0x0800 (no signal), add a fake (empty) audio
366                 // frame to get it out of the queue.
367                 // TODO: Figure out if there are other formats that come with
368                 // no audio, and treat them the same.
369                 if (format == 0x0800) {
370                         FrameAllocator::Frame fake_audio_frame = audio_frame_allocator->alloc_frame();
371                         if (fake_audio_frame.data == nullptr) {
372                                 // Oh well, it's just a no-signal frame anyway.
373                                 printf("Couldn't allocate fake audio frame, also dropping no-signal video frame.\n");
374                                 current_video_frame.owner->release_frame(current_video_frame);
375                                 current_video_frame = video_frame_allocator->alloc_frame();
376                                 return;
377                         }
378                         queue_frame(format, timecode, fake_audio_frame, &pending_audio_frames);
379                 }
380                 //dump_frame();
381                 queue_frame(format, timecode, current_video_frame, &pending_video_frames);
382
383                 // Update the assumed frame width. We might be one frame too late on format changes,
384                 // but it's much better than asking the user to choose manually.
385                 VideoFormat video_format;
386                 if (decode_video_format(format, &video_format)) {
387                         assumed_frame_width = video_format.width;
388                 }
389         }
390         //printf("Found frame start, format 0x%04x timecode 0x%04x, previous frame length was %d/%d\n",
391         //      format, timecode,
392         //      //start[7], start[6], start[5], start[4],
393         //      read_current_frame, FRAME_SIZE);
394
395         current_video_frame = video_frame_allocator->alloc_frame();
396         //if (current_video_frame.data == nullptr) {
397         //      read_current_frame = -1;
398         //} else {
399         //      read_current_frame = 0;
400         //}
401 }
402
403 void BMUSBCapture::start_new_audio_block(const uint8_t *start)
404 {
405         uint16_t format = (start[3] << 8) | start[2];
406         uint16_t timecode = (start[1] << 8) | start[0];
407         if (current_audio_frame.len > 0) {
408                 //dump_audio_block();
409                 queue_frame(format, timecode, current_audio_frame, &pending_audio_frames);
410         }
411         //printf("Found audio block start, format 0x%04x timecode 0x%04x, previous block length was %d\n",
412         //      format, timecode, read_current_audio_block);
413         current_audio_frame = audio_frame_allocator->alloc_frame();
414 }
415
416 #if 0
417 static void dump_pack(const libusb_transfer *xfr, int offset, const libusb_iso_packet_descriptor *pack)
418 {
419         //      printf("ISO pack%u length:%u, actual_length:%u, offset:%u\n", i, pack->length, pack->actual_length, offset);
420         for (unsigned j = 0; j < pack->actual_length; j++) {
421         //for (int j = 0; j < min(pack->actual_length, 16u); j++) {
422                 printf("%02x", xfr->buffer[j + offset]);
423                 if ((j % 16) == 15)
424                         printf("\n");
425                 else if ((j % 8) == 7)
426                         printf("  ");
427                 else
428                         printf(" ");
429         }
430 }
431 #endif
432
433 void memcpy_interleaved(uint8_t *dest1, uint8_t *dest2, const uint8_t *src, size_t n)
434 {
435         assert(n % 2 == 0);
436         uint8_t *dptr1 = dest1;
437         uint8_t *dptr2 = dest2;
438
439         for (size_t i = 0; i < n; i += 2) {
440                 *dptr1++ = *src++;
441                 *dptr2++ = *src++;
442         }
443 }
444
445 void add_to_frame(FrameAllocator::Frame *current_frame, const char *frame_type_name, const uint8_t *start, const uint8_t *end)
446 {
447         if (current_frame->data == nullptr ||
448             current_frame->len > current_frame->size ||
449             start == end) {
450                 return;
451         }
452
453         int bytes = end - start;
454         if (current_frame->len + bytes > current_frame->size) {
455                 current_frame->overflow = current_frame->len + bytes - current_frame->size;
456                 current_frame->len = current_frame->size;
457                 if (current_frame->overflow > 1048576) {
458                         printf("%d bytes overflow after last %s frame\n",
459                                 int(current_frame->overflow), frame_type_name);
460                         current_frame->overflow = 0;
461                 }
462                 //dump_frame();
463         } else {
464                 if (current_frame->interleaved) {
465                         uint8_t *data = current_frame->data + current_frame->len / 2;
466                         uint8_t *data2 = current_frame->data2 + current_frame->len / 2;
467                         if (current_frame->len % 2 == 1) {
468                                 ++data;
469                                 swap(data, data2);
470                         }
471                         if (bytes % 2 == 1) {
472                                 *data++ = *start++;
473                                 swap(data, data2);
474                                 ++current_frame->len;
475                                 --bytes;
476                         }
477                         memcpy_interleaved(data, data2, start, bytes);
478                         current_frame->len += bytes;
479                 } else {
480                         memcpy(current_frame->data + current_frame->len, start, bytes);
481                         current_frame->len += bytes;
482                 }
483         }
484 }
485
486 #if 0
487 void avx2_dump(const char *name, __m256i n)
488 {
489         printf("%-10s:", name);
490         printf(" %02x", _mm256_extract_epi8(n, 0));
491         printf(" %02x", _mm256_extract_epi8(n, 1));
492         printf(" %02x", _mm256_extract_epi8(n, 2));
493         printf(" %02x", _mm256_extract_epi8(n, 3));
494         printf(" %02x", _mm256_extract_epi8(n, 4));
495         printf(" %02x", _mm256_extract_epi8(n, 5));
496         printf(" %02x", _mm256_extract_epi8(n, 6));
497         printf(" %02x", _mm256_extract_epi8(n, 7));
498         printf(" ");
499         printf(" %02x", _mm256_extract_epi8(n, 8));
500         printf(" %02x", _mm256_extract_epi8(n, 9));
501         printf(" %02x", _mm256_extract_epi8(n, 10));
502         printf(" %02x", _mm256_extract_epi8(n, 11));
503         printf(" %02x", _mm256_extract_epi8(n, 12));
504         printf(" %02x", _mm256_extract_epi8(n, 13));
505         printf(" %02x", _mm256_extract_epi8(n, 14));
506         printf(" %02x", _mm256_extract_epi8(n, 15));
507         printf(" ");
508         printf(" %02x", _mm256_extract_epi8(n, 16));
509         printf(" %02x", _mm256_extract_epi8(n, 17));
510         printf(" %02x", _mm256_extract_epi8(n, 18));
511         printf(" %02x", _mm256_extract_epi8(n, 19));
512         printf(" %02x", _mm256_extract_epi8(n, 20));
513         printf(" %02x", _mm256_extract_epi8(n, 21));
514         printf(" %02x", _mm256_extract_epi8(n, 22));
515         printf(" %02x", _mm256_extract_epi8(n, 23));
516         printf(" ");
517         printf(" %02x", _mm256_extract_epi8(n, 24));
518         printf(" %02x", _mm256_extract_epi8(n, 25));
519         printf(" %02x", _mm256_extract_epi8(n, 26));
520         printf(" %02x", _mm256_extract_epi8(n, 27));
521         printf(" %02x", _mm256_extract_epi8(n, 28));
522         printf(" %02x", _mm256_extract_epi8(n, 29));
523         printf(" %02x", _mm256_extract_epi8(n, 30));
524         printf(" %02x", _mm256_extract_epi8(n, 31));
525         printf("\n");
526 }
527 #endif
528
529 #ifndef HAS_MULTIVERSIONING
530
531 const uint8_t *add_to_frame_fastpath(FrameAllocator::Frame *current_frame, const uint8_t *start, const uint8_t *limit, const char sync_char)
532 {
533         // No fast path possible unless we have multiversioning.
534         return start;
535 }
536
537 #else  // defined(HAS_MULTIVERSIONING)
538
539 const uint8_t *add_to_frame_fastpath_core(FrameAllocator::Frame *current_frame, const uint8_t *aligned_start, const uint8_t *limit, const char sync_char);
540
541 // Does a memcpy and memchr in one to reduce processing time.
542 // Note that the benefit is somewhat limited if your L3 cache is small,
543 // as you'll (unfortunately) spend most of the time loading the data
544 // from main memory.
545 //
546 // Complicated cases are left to the slow path; it basically stops copying
547 // up until the first instance of "sync_char" (usually a bit before, actually).
548 // This is fine, since 0x00 bytes shouldn't really show up in normal picture
549 // data, and what we really need this for is the 00 00 ff ff marker in video data.
550 __attribute__((target("default")))
551 const uint8_t *add_to_frame_fastpath(FrameAllocator::Frame *current_frame, const uint8_t *start, const uint8_t *limit, const char sync_char)
552 {
553         // No fast path possible unless we have SSE 4.1 or higher.
554         return start;
555 }
556
557 __attribute__((target("sse4.1", "avx2")))
558 const uint8_t *add_to_frame_fastpath(FrameAllocator::Frame *current_frame, const uint8_t *start, const uint8_t *limit, const char sync_char)
559 {
560         if (current_frame->data == nullptr ||
561             current_frame->len > current_frame->size ||
562             start == limit) {
563                 return start;
564         }
565         size_t orig_bytes = limit - start;
566         if (orig_bytes < 128) {
567                 // Don't bother.
568                 return start;
569         }
570
571         // Don't read more bytes than we can write.
572         limit = min(limit, start + (current_frame->size - current_frame->len));
573
574         // Align end to 32 bytes.
575         limit = (const uint8_t *)(intptr_t(limit) & ~31);
576
577         if (start >= limit) {
578                 return start;
579         }
580
581         // Process [0,31] bytes, such that start gets aligned to 32 bytes.
582         const uint8_t *aligned_start = (const uint8_t *)(intptr_t(start + 31) & ~31);
583         if (aligned_start != start) {
584                 const uint8_t *sync_start = (const uint8_t *)memchr(start, sync_char, aligned_start - start);
585                 if (sync_start == nullptr) {
586                         add_to_frame(current_frame, "", start, aligned_start);
587                 } else {
588                         add_to_frame(current_frame, "", start, sync_start);
589                         return sync_start;
590                 }
591         }
592
593         // Make the length a multiple of 64.
594         if (current_frame->interleaved) {
595                 if (((limit - aligned_start) % 64) != 0) {
596                         limit -= 32;
597                 }
598                 assert(((limit - aligned_start) % 64) == 0);
599         }
600
601         return add_to_frame_fastpath_core(current_frame, aligned_start, limit, sync_char);
602 }
603
604 __attribute__((target("avx2")))
605 const uint8_t *add_to_frame_fastpath_core(FrameAllocator::Frame *current_frame, const uint8_t *aligned_start, const uint8_t *limit, const char sync_char)
606 {
607         const __m256i needle = _mm256_set1_epi8(sync_char);
608
609         const __restrict __m256i *in = (const __m256i *)aligned_start;
610         if (current_frame->interleaved) {
611                 __restrict __m256i *out1 = (__m256i *)(current_frame->data + (current_frame->len + 1) / 2);
612                 __restrict __m256i *out2 = (__m256i *)(current_frame->data2 + current_frame->len / 2);
613                 if (current_frame->len % 2 == 1) {
614                         swap(out1, out2);
615                 }
616
617                 __m256i shuffle_cw = _mm256_set_epi8(
618                         15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0,
619                         15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0);
620                 while (in < (const __m256i *)limit) {
621                         // Note: For brevity, comments show lanes as if they were 2x64-bit (they're actually 2x128).
622                         __m256i data1 = _mm256_stream_load_si256(in);         // AaBbCcDd EeFfGgHh
623                         __m256i data2 = _mm256_stream_load_si256(in + 1);     // IiJjKkLl MmNnOoPp
624
625                         __m256i found1 = _mm256_cmpeq_epi8(data1, needle);
626                         __m256i found2 = _mm256_cmpeq_epi8(data2, needle);
627                         __m256i found = _mm256_or_si256(found1, found2);
628
629                         data1 = _mm256_shuffle_epi8(data1, shuffle_cw);       // ABCDabcd EFGHefgh
630                         data2 = _mm256_shuffle_epi8(data2, shuffle_cw);       // IJKLijkl MNOPmnop
631                 
632                         data1 = _mm256_permute4x64_epi64(data1, 0b11011000);  // ABCDEFGH abcdefgh
633                         data2 = _mm256_permute4x64_epi64(data2, 0b11011000);  // IJKLMNOP ijklmnop
634
635                         __m256i lo = _mm256_permute2x128_si256(data1, data2, 0b00100000);
636                         __m256i hi = _mm256_permute2x128_si256(data1, data2, 0b00110001);
637
638                         _mm256_storeu_si256(out1, lo);  // Store as early as possible, even if the data isn't used.
639                         _mm256_storeu_si256(out2, hi);
640
641                         if (!_mm256_testz_si256(found, found)) {
642                                 break;
643                         }
644
645                         in += 2;
646                         ++out1;
647                         ++out2;
648                 }
649                 current_frame->len += (uint8_t *)in - aligned_start;
650         } else {
651                 __m256i *out = (__m256i *)(current_frame->data + current_frame->len);
652                 while (in < (const __m256i *)limit) {
653                         __m256i data = _mm256_load_si256(in);
654                         _mm256_storeu_si256(out, data);  // Store as early as possible, even if the data isn't used.
655                         __m256i found = _mm256_cmpeq_epi8(data, needle);
656                         if (!_mm256_testz_si256(found, found)) {
657                                 break;
658                         }
659
660                         ++in;
661                         ++out;
662                 }
663                 current_frame->len = (uint8_t *)out - current_frame->data;
664         }
665
666         //printf("managed to fastpath %ld/%ld bytes\n", (const uint8_t *)in - (const uint8_t *)aligned_start, orig_bytes);
667         return (const uint8_t *)in;
668 }
669
670 __attribute__((target("sse4.1")))
671 const uint8_t *add_to_frame_fastpath_core(FrameAllocator::Frame *current_frame, const uint8_t *aligned_start, const uint8_t *limit, const char sync_char)
672 {
673         const __m128i needle = _mm_set1_epi8(sync_char);
674
675         const __m128i *in = (const __m128i *)aligned_start;
676         if (current_frame->interleaved) {
677                 __m128i *out1 = (__m128i *)(current_frame->data + (current_frame->len + 1) / 2);
678                 __m128i *out2 = (__m128i *)(current_frame->data2 + current_frame->len / 2);
679                 if (current_frame->len % 2 == 1) {
680                         swap(out1, out2);
681                 }
682
683                 __m128i mask_lower_byte = _mm_set1_epi16(0x00ff);
684                 while (in < (const __m128i *)limit) {
685                         __m128i data1 = _mm_load_si128(in);
686                         __m128i data2 = _mm_load_si128(in + 1);
687                         __m128i data1_lo = _mm_and_si128(data1, mask_lower_byte);
688                         __m128i data2_lo = _mm_and_si128(data2, mask_lower_byte);
689                         __m128i data1_hi = _mm_srli_epi16(data1, 8);
690                         __m128i data2_hi = _mm_srli_epi16(data2, 8);
691                         __m128i lo = _mm_packus_epi16(data1_lo, data2_lo);
692                         _mm_storeu_si128(out1, lo);  // Store as early as possible, even if the data isn't used.
693                         __m128i hi = _mm_packus_epi16(data1_hi, data2_hi);
694                         _mm_storeu_si128(out2, hi);
695                         __m128i found1 = _mm_cmpeq_epi8(data1, needle);
696                         __m128i found2 = _mm_cmpeq_epi8(data2, needle);
697                         if (!_mm_testz_si128(found1, found1) ||
698                             !_mm_testz_si128(found2, found2)) {
699                                 break;
700                         }
701
702                         in += 2;
703                         ++out1;
704                         ++out2;
705                 }
706                 current_frame->len += (uint8_t *)in - aligned_start;
707         } else {
708                 __m128i *out = (__m128i *)(current_frame->data + current_frame->len);
709                 while (in < (const __m128i *)limit) {
710                         __m128i data = _mm_load_si128(in);
711                         _mm_storeu_si128(out, data);  // Store as early as possible, even if the data isn't used.
712                         __m128i found = _mm_cmpeq_epi8(data, needle);
713                         if (!_mm_testz_si128(found, found)) {
714                                 break;
715                         }
716
717                         ++in;
718                         ++out;
719                 }
720                 current_frame->len = (uint8_t *)out - current_frame->data;
721         }
722
723         //printf("managed to fastpath %ld/%ld bytes\n", (const uint8_t *)in - (const uint8_t *)aligned_start, orig_bytes);
724         return (const uint8_t *)in;
725 }
726
727 #endif  // defined(HAS_MULTIVERSIONING)
728
729 void decode_packs(const libusb_transfer *xfr,
730                   const char *sync_pattern,
731                   int sync_length,
732                   FrameAllocator::Frame *current_frame,
733                   const char *frame_type_name,
734                   function<void(const uint8_t *start)> start_callback)
735 {
736         int offset = 0;
737         for (int i = 0; i < xfr->num_iso_packets; i++) {
738                 const libusb_iso_packet_descriptor *pack = &xfr->iso_packet_desc[i];
739
740                 if (pack->status != LIBUSB_TRANSFER_COMPLETED) {
741                         fprintf(stderr, "Error: pack %u/%u status %d\n", i, xfr->num_iso_packets, pack->status);
742                         continue;
743 //exit(5);
744                 }
745
746                 const uint8_t *start = xfr->buffer + offset;
747                 const uint8_t *limit = start + pack->actual_length;
748                 while (start < limit) {  // Usually runs only one iteration.
749                         start = add_to_frame_fastpath(current_frame, start, limit, sync_pattern[0]);
750                         if (start == limit) break;
751                         assert(start < limit);
752
753                         const unsigned char* start_next_frame = (const unsigned char *)memmem(start, limit - start, sync_pattern, sync_length);
754                         if (start_next_frame == nullptr) {
755                                 // add the rest of the buffer
756                                 add_to_frame(current_frame, frame_type_name, start, limit);
757                                 break;
758                         } else {
759                                 add_to_frame(current_frame, frame_type_name, start, start_next_frame);
760                                 start = start_next_frame + sync_length;  // skip sync
761                                 start_callback(start);
762                         }
763                 }
764 #if 0
765                 dump_pack(xfr, offset, pack);
766 #endif
767                 offset += pack->length;
768         }
769 }
770
771 void BMUSBCapture::cb_xfr(struct libusb_transfer *xfr)
772 {
773         if (xfr->status != LIBUSB_TRANSFER_COMPLETED &&
774             xfr->status != LIBUSB_TRANSFER_NO_DEVICE) {
775                 fprintf(stderr, "error: transfer status %d\n", xfr->status);
776                 libusb_free_transfer(xfr);
777                 exit(3);
778         }
779
780         assert(xfr->user_data != nullptr);
781         BMUSBCapture *usb = static_cast<BMUSBCapture *>(xfr->user_data);
782
783         if (xfr->status == LIBUSB_TRANSFER_NO_DEVICE) {
784                 if (!usb->disconnected) {
785                         fprintf(stderr, "Device went away, stopping transfers.\n");
786                         usb->disconnected = true;
787                         if (usb->card_disconnected_callback) {
788                                 usb->card_disconnected_callback();
789                         }
790                 }
791                 // Don't reschedule the transfer; the loop will stop by itself.
792                 return;
793         }
794
795         if (xfr->type == LIBUSB_TRANSFER_TYPE_ISOCHRONOUS) {
796                 if (xfr->endpoint == 0x84) {
797                         decode_packs(xfr, "DeckLinkAudioResyncT", 20, &usb->current_audio_frame, "audio", bind(&BMUSBCapture::start_new_audio_block, usb, _1));
798                 } else {
799                         decode_packs(xfr, "\x00\x00\xff\xff", 4, &usb->current_video_frame, "video", bind(&BMUSBCapture::start_new_frame, usb, _1));
800
801                         // Update the transfer with the new assumed width, if we're in the process of changing formats.
802                         change_xfer_size_for_width(usb->assumed_frame_width, xfr);
803                 }
804         }
805         if (xfr->type == LIBUSB_TRANSFER_TYPE_CONTROL) {
806                 //const libusb_control_setup *setup = libusb_control_transfer_get_setup(xfr);
807                 uint8_t *buf = libusb_control_transfer_get_data(xfr);
808 #if 0
809                 if (setup->wIndex == 44) {
810                         printf("read timer register: 0x%02x%02x%02x%02x\n", buf[0], buf[1], buf[2], buf[3]);
811                 } else {
812                         printf("read register %2d:                      0x%02x%02x%02x%02x\n",
813                                 setup->wIndex, buf[0], buf[1], buf[2], buf[3]);
814                 }
815 #else
816                 memcpy(usb->register_file + usb->current_register, buf, 4);
817                 usb->current_register = (usb->current_register + 4) % NUM_BMUSB_REGISTERS;
818                 if (usb->current_register == 0) {
819                         // read through all of them
820                         printf("register dump:");
821                         for (int i = 0; i < NUM_BMUSB_REGISTERS; i += 4) {
822                                 printf(" 0x%02x%02x%02x%02x", usb->register_file[i], usb->register_file[i + 1], usb->register_file[i + 2], usb->register_file[i + 3]);
823                         }
824                         printf("\n");
825                 }
826                 libusb_fill_control_setup(xfr->buffer,
827                     LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
828                         /*index=*/usb->current_register, /*length=*/4);
829 #endif
830         }
831
832 #if 0
833         printf("length:%u, actual_length:%u\n", xfr->length, xfr->actual_length);
834         for (i = 0; i < xfr->actual_length; i++) {
835                 printf("%02x", xfr->buffer[i]);
836                 if (i % 16)
837                         printf("\n");
838                 else if (i % 8)
839                         printf("  ");
840                 else
841                         printf(" ");
842         }
843 #endif
844
845         int rc = libusb_submit_transfer(xfr);
846         if (rc < 0) {
847                 fprintf(stderr, "error re-submitting URB: %s\n", libusb_error_name(rc));
848                 exit(1);
849         }
850 }
851
852 int BMUSBCapture::cb_hotplug(libusb_context *ctx, libusb_device *dev, libusb_hotplug_event event, void *user_data)
853 {
854         if (card_connected_callback != nullptr) {
855                 libusb_device_descriptor desc;
856                 if (libusb_get_device_descriptor(dev, &desc) < 0) {
857                         fprintf(stderr, "Error getting device descriptor for hotplugged device %p, killing hotplug\n", dev);
858                         libusb_unref_device(dev);
859                         return 1;
860                 }
861
862                 if ((desc.idVendor == USB_VENDOR_BLACKMAGIC && desc.idProduct == 0xbd3b) ||
863                     (desc.idVendor == USB_VENDOR_BLACKMAGIC && desc.idProduct == 0xbd4f)) {
864                         card_connected_callback(dev);  // Callback takes ownership.
865                         return 0;
866                 }
867         }
868         libusb_unref_device(dev);
869         return 0;
870 }
871
872 void BMUSBCapture::usb_thread_func()
873 {
874         sched_param param;
875         memset(&param, 0, sizeof(param));
876         param.sched_priority = 1;
877         if (sched_setscheduler(0, SCHED_RR, &param) == -1) {
878                 printf("couldn't set realtime priority for USB thread: %s\n", strerror(errno));
879         }
880         while (!should_quit) {
881                 int rc = libusb_handle_events(nullptr);
882                 if (rc != LIBUSB_SUCCESS)
883                         break;
884         }
885 }
886
887 struct USBCardDevice {
888         uint16_t product;
889         uint8_t bus, port;
890         libusb_device *device;
891 };
892
893 const char *get_product_name(uint16_t product)
894 {
895         if (product == 0xbd3b) {
896                 return "Intensity Shuttle";
897         } else if (product == 0xbd4f) {
898                 return "UltraStudio SDI";
899         } else {
900                 assert(false);
901                 return nullptr;
902         }
903 }
904
905 string get_card_description(int id, uint8_t bus, uint8_t port, uint16_t product)
906 {
907         const char *product_name = get_product_name(product);
908
909         char buf[256];
910         snprintf(buf, sizeof(buf), "USB card %d: Bus %03u Device %03u  %s",
911                 id, bus, port, product_name);
912         return buf;
913 }
914
915 libusb_device_handle *open_card(int card_index, string *description)
916 {
917         libusb_device **devices;
918         ssize_t num_devices = libusb_get_device_list(nullptr, &devices);
919         if (num_devices == -1) {
920                 fprintf(stderr, "Error finding USB devices\n");
921                 exit(1);
922         }
923         vector<USBCardDevice> found_cards;
924         for (ssize_t i = 0; i < num_devices; ++i) {
925                 libusb_device_descriptor desc;
926                 if (libusb_get_device_descriptor(devices[i], &desc) < 0) {
927                         fprintf(stderr, "Error getting device descriptor for device %d\n", int(i));
928                         exit(1);
929                 }
930
931                 uint8_t bus = libusb_get_bus_number(devices[i]);
932                 uint8_t port = libusb_get_port_number(devices[i]);
933
934                 if (!(desc.idVendor == USB_VENDOR_BLACKMAGIC && desc.idProduct == 0xbd3b) &&
935                     !(desc.idVendor == USB_VENDOR_BLACKMAGIC && desc.idProduct == 0xbd4f)) {
936                         libusb_unref_device(devices[i]);
937                         continue;
938                 }
939
940                 found_cards.push_back({ desc.idProduct, bus, port, devices[i] });
941         }
942         libusb_free_device_list(devices, 0);
943
944         // Sort the devices to get a consistent ordering.
945         sort(found_cards.begin(), found_cards.end(), [](const USBCardDevice &a, const USBCardDevice &b) {
946                 if (a.product != b.product)
947                         return a.product < b.product;
948                 if (a.bus != b.bus)
949                         return a.bus < b.bus;
950                 return a.port < b.port;
951         });
952
953         for (size_t i = 0; i < found_cards.size(); ++i) {
954                 string tmp_description = get_card_description(i, found_cards[i].bus, found_cards[i].port, found_cards[i].product);
955                 fprintf(stderr, "%s\n", tmp_description.c_str());
956                 if (i == size_t(card_index)) {
957                         *description = tmp_description;
958                 }
959         }
960
961         if (size_t(card_index) >= found_cards.size()) {
962                 fprintf(stderr, "Could not open card %d (only %d found)\n", card_index, int(found_cards.size()));
963                 exit(1);
964         }
965
966         libusb_device_handle *devh;
967         int rc = libusb_open(found_cards[card_index].device, &devh);
968         if (rc < 0) {
969                 fprintf(stderr, "Error opening card %d: %s\n", card_index, libusb_error_name(rc));
970                 exit(1);
971         }
972
973         for (size_t i = 0; i < found_cards.size(); ++i) {
974                 libusb_unref_device(found_cards[i].device);
975         }
976
977         return devh;
978 }
979
980 libusb_device_handle *open_card(unsigned card_index, libusb_device *dev, string *description)
981 {
982         uint8_t bus = libusb_get_bus_number(dev);
983         uint8_t port = libusb_get_port_number(dev);
984
985         libusb_device_descriptor desc;
986         if (libusb_get_device_descriptor(dev, &desc) < 0) {
987                 fprintf(stderr, "Error getting device descriptor for device %p\n", dev);
988                 exit(1);
989         }
990
991         *description = get_card_description(card_index, bus, port, desc.idProduct);
992
993         libusb_device_handle *devh;
994         int rc = libusb_open(dev, &devh);
995         if (rc < 0) {
996                 fprintf(stderr, "Error opening card %p: %s\n", dev, libusb_error_name(rc));
997                 exit(1);
998         }
999
1000         return devh;
1001 }
1002
1003 void BMUSBCapture::configure_card()
1004 {
1005         if (video_frame_allocator == nullptr) {
1006                 owned_video_frame_allocator.reset(new MallocFrameAllocator(FRAME_SIZE, NUM_QUEUED_VIDEO_FRAMES));
1007                 set_video_frame_allocator(owned_video_frame_allocator.get());
1008         }
1009         if (audio_frame_allocator == nullptr) {
1010                 owned_audio_frame_allocator.reset(new MallocFrameAllocator(65536, NUM_QUEUED_AUDIO_FRAMES));
1011                 set_audio_frame_allocator(owned_audio_frame_allocator.get());
1012         }
1013         dequeue_thread_should_quit = false;
1014         dequeue_thread = thread(&BMUSBCapture::dequeue_thread_func, this);
1015
1016         int rc;
1017         struct libusb_transfer *xfr;
1018
1019         rc = libusb_init(nullptr);
1020         if (rc < 0) {
1021                 fprintf(stderr, "Error initializing libusb: %s\n", libusb_error_name(rc));
1022                 exit(1);
1023         }
1024
1025         if (dev == nullptr) {
1026                 devh = open_card(card_index, &description);
1027         } else {
1028                 devh = open_card(card_index, dev, &description);
1029                 libusb_unref_device(dev);
1030         }
1031         if (!devh) {
1032                 fprintf(stderr, "Error finding USB device\n");
1033                 exit(1);
1034         }
1035
1036         libusb_config_descriptor *config;
1037         rc = libusb_get_config_descriptor(libusb_get_device(devh), /*config_index=*/0, &config);
1038         if (rc < 0) {
1039                 fprintf(stderr, "Error getting configuration: %s\n", libusb_error_name(rc));
1040                 exit(1);
1041         }
1042
1043 #if 0
1044         printf("%d interface\n", config->bNumInterfaces);
1045         for (int interface_number = 0; interface_number < config->bNumInterfaces; ++interface_number) {
1046                 printf("  interface %d\n", interface_number);
1047                 const libusb_interface *interface = &config->interface[interface_number];
1048                 for (int altsetting = 0; altsetting < interface->num_altsetting; ++altsetting) {
1049                         const libusb_interface_descriptor *interface_desc = &interface->altsetting[altsetting];
1050                         printf("    alternate setting %d\n", interface_desc->bAlternateSetting);
1051                         for (int endpoint_number = 0; endpoint_number < interface_desc->bNumEndpoints; ++endpoint_number) {
1052                                 const libusb_endpoint_descriptor *endpoint = &interface_desc->endpoint[endpoint_number];
1053                                 printf("        endpoint address 0x%02x\n", endpoint->bEndpointAddress);
1054                         }
1055                 }
1056         }
1057 #endif
1058
1059         rc = libusb_set_configuration(devh, /*configuration=*/1);
1060         if (rc < 0) {
1061                 fprintf(stderr, "Error setting configuration 1: %s\n", libusb_error_name(rc));
1062                 exit(1);
1063         }
1064
1065         rc = libusb_claim_interface(devh, 0);
1066         if (rc < 0) {
1067                 fprintf(stderr, "Error claiming interface 0: %s\n", libusb_error_name(rc));
1068                 exit(1);
1069         }
1070
1071         // Alternate setting 1 is output, alternate setting 2 is input.
1072         // Card is reset when switching alternates, so the driver uses
1073         // this “double switch” when it wants to reset.
1074         //
1075         // There's also alternate settings 3 and 4, which seem to be
1076         // like 1 and 2 except they advertise less bandwidth needed.
1077         rc = libusb_set_interface_alt_setting(devh, /*interface=*/0, /*alternate_setting=*/1);
1078         if (rc < 0) {
1079                 fprintf(stderr, "Error setting alternate 1: %s\n", libusb_error_name(rc));
1080                 exit(1);
1081         }
1082         rc = libusb_set_interface_alt_setting(devh, /*interface=*/0, /*alternate_setting=*/2);
1083         if (rc < 0) {
1084                 fprintf(stderr, "Error setting alternate 2: %s\n", libusb_error_name(rc));
1085                 exit(1);
1086         }
1087 #if 0
1088         rc = libusb_set_interface_alt_setting(devh, /*interface=*/0, /*alternate_setting=*/1);
1089         if (rc < 0) {
1090                 fprintf(stderr, "Error setting alternate 1: %s\n", libusb_error_name(rc));
1091                 exit(1);
1092         }
1093 #endif
1094
1095 #if 0
1096         rc = libusb_claim_interface(devh, 3);
1097         if (rc < 0) {
1098                 fprintf(stderr, "Error claiming interface 3: %s\n", libusb_error_name(rc));
1099                 exit(1);
1100         }
1101 #endif
1102
1103         // theories:
1104         //   44 is some kind of timer register (first 16 bits count upwards)
1105         //   24 is some sort of watchdog?
1106         //      you can seemingly set it to 0x73c60001 and that bit will eventually disappear
1107         //      (or will go to 0x73c60010?), also seen 0x73c60100
1108         //   12 also changes all the time, unclear why  
1109         //   16 seems to be autodetected mode somehow
1110         //      --    this is e00115e0 after reset?
1111         //                    ed0115e0 after mode change [to output?]
1112         //                    2d0015e0 after more mode change [to input]
1113         //                    ed0115e0 after more mode change
1114         //                    2d0015e0 after more mode change
1115         //
1116         //                    390115e0 seems to indicate we have signal
1117         //         changes to 200115e0 when resolution changes/we lose signal, driver resets after a while
1118         //
1119         //                    200015e0 on startup
1120         //         changes to 250115e0 when we sync to the signal
1121         //
1122         //    so only first 16 bits count, and 0x0100 is a mask for ok/stable signal?
1123         //
1124         //    Bottom 16 bits of this register seem to be firmware version number (possibly not all all of them).
1125         //
1126         //    28 and 32 seems to be analog audio input levels (one byte for each of the eight channels).
1127         //    however, if setting 32 with HDMI embedded audio, it is immediately overwritten back (to 0xe137002a).
1128         //
1129         //    4, 8, 20 are unclear. seem to be some sort of bitmask, but we can set them to 0 with no apparent effect.
1130         //    perhaps some of them are related to analog output?
1131         //
1132         //    36 can be set to 0 with no apparent effect (all of this tested on both video and audio),
1133         //    but the driver sets it to 0x8036802a at some point.
1134         //
1135         //    all of this is on request 214/215. other requests (192, 219,
1136         //    222, 223, 224) are used for firmware upgrade. Probably best to
1137         //    stay out of it unless you know what you're doing.
1138         //
1139         //
1140         // register 16:
1141         // first byte is 0x39 for a stable 576p60 signal, 0x2d for a stable 720p60 signal, 0x20 for no signal
1142         //
1143         // theories:
1144         //   0x01 - stable signal
1145         //   0x04 - deep color
1146         //   0x08 - unknown (audio??)
1147         //   0x20 - 720p??
1148         //   0x30 - 576p??
1149
1150         update_capture_mode();
1151
1152         struct ctrl {
1153                 int endpoint;
1154                 int request;
1155                 int index;
1156                 uint32_t data;
1157         };
1158         static const ctrl ctrls[] = {
1159                 { LIBUSB_ENDPOINT_IN,  214, 16, 0 },
1160                 { LIBUSB_ENDPOINT_IN,  214,  0, 0 },
1161
1162                 //{ LIBUSB_ENDPOINT_OUT, 215,  0, 0x80000100 },
1163                 //{ LIBUSB_ENDPOINT_OUT, 215,  0, 0x09000000 },
1164                 { LIBUSB_ENDPOINT_OUT, 215, 24, 0x73c60001 },  // latch for frame start?
1165                 { LIBUSB_ENDPOINT_IN,  214, 24, 0 },  // 
1166         };
1167
1168         for (unsigned req = 0; req < sizeof(ctrls) / sizeof(ctrls[0]); ++req) {
1169                 uint32_t flipped = htonl(ctrls[req].data);
1170                 static uint8_t value[4];
1171                 memcpy(value, &flipped, sizeof(flipped));
1172                 int size = sizeof(value);
1173                 //if (ctrls[req].request == 215) size = 0;
1174                 rc = libusb_control_transfer(devh, LIBUSB_REQUEST_TYPE_VENDOR | ctrls[req].endpoint,
1175                         /*request=*/ctrls[req].request, /*value=*/0, /*index=*/ctrls[req].index, value, size, /*timeout=*/0);
1176                 if (rc < 0) {
1177                         fprintf(stderr, "Error on control %d: %s\n", ctrls[req].index, libusb_error_name(rc));
1178                         exit(1);
1179                 }
1180
1181                 if (ctrls[req].index == 16 && rc == 4) {
1182                         printf("Card firmware version: 0x%02x%02x\n", value[2], value[3]);
1183                 }
1184
1185 #if 0
1186                 printf("rc=%d: ep=%d@%d %d -> 0x", rc, ctrls[req].endpoint, ctrls[req].request, ctrls[req].index);
1187                 for (int i = 0; i < rc; ++i) {
1188                         printf("%02x", value[i]);
1189                 }
1190                 printf("\n");
1191 #endif
1192         }
1193
1194 #if 0
1195         // DEBUG
1196         for ( ;; ) {
1197                 static int my_index = 0;
1198                 static uint8_t value[4];
1199                 int size = sizeof(value);
1200                 rc = libusb_control_transfer(devh, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
1201                         /*request=*/214, /*value=*/0, /*index=*/my_index, value, size, /*timeout=*/0);
1202                 if (rc < 0) {
1203                         fprintf(stderr, "Error on control\n");
1204                         exit(1);
1205                 }
1206                 printf("rc=%d index=%d: 0x", rc, my_index);
1207                 for (int i = 0; i < rc; ++i) {
1208                         printf("%02x", value[i]);
1209                 }
1210                 printf("\n");
1211         }
1212 #endif
1213
1214 #if 0
1215         // set up an asynchronous transfer of the timer register
1216         static uint8_t cmdbuf[LIBUSB_CONTROL_SETUP_SIZE + 4];
1217         static int completed = 0;
1218
1219         xfr = libusb_alloc_transfer(0);
1220         libusb_fill_control_setup(cmdbuf,
1221             LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
1222                 /*index=*/44, /*length=*/4);
1223         libusb_fill_control_transfer(xfr, devh, cmdbuf, cb_xfr, &completed, 0);
1224         xfr->user_data = this;
1225         libusb_submit_transfer(xfr);
1226
1227         // set up an asynchronous transfer of register 24
1228         static uint8_t cmdbuf2[LIBUSB_CONTROL_SETUP_SIZE + 4];
1229         static int completed2 = 0;
1230
1231         xfr = libusb_alloc_transfer(0);
1232         libusb_fill_control_setup(cmdbuf2,
1233             LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
1234                 /*index=*/24, /*length=*/4);
1235         libusb_fill_control_transfer(xfr, devh, cmdbuf2, cb_xfr, &completed2, 0);
1236         xfr->user_data = this;
1237         libusb_submit_transfer(xfr);
1238 #endif
1239
1240         // set up an asynchronous transfer of the register dump
1241         static uint8_t cmdbuf3[LIBUSB_CONTROL_SETUP_SIZE + 4];
1242         static int completed3 = 0;
1243
1244         xfr = libusb_alloc_transfer(0);
1245         libusb_fill_control_setup(cmdbuf3,
1246             LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
1247                 /*index=*/current_register, /*length=*/4);
1248         libusb_fill_control_transfer(xfr, devh, cmdbuf3, cb_xfr, &completed3, 0);
1249         xfr->user_data = this;
1250         //libusb_submit_transfer(xfr);
1251
1252         //audiofp = fopen("audio.raw", "wb");
1253
1254         // set up isochronous transfers for audio and video
1255         for (int e = 3; e <= 4; ++e) {
1256                 //int num_transfers = (e == 3) ? 6 : 6;
1257                 int num_transfers = 6;
1258                 for (int i = 0; i < num_transfers; ++i) {
1259                         size_t buf_size;
1260                         int num_iso_pack, size;
1261                         if (e == 3) {
1262                                 // Allocate for minimum width (because that will give us the most
1263                                 // number of packets, so we don't need to reallocated, but we'll
1264                                 // default to 720p for the first frame.
1265                                 size = find_xfer_size_for_width(MIN_WIDTH);
1266                                 num_iso_pack = USB_VIDEO_TRANSFER_SIZE / size;
1267                                 buf_size = USB_VIDEO_TRANSFER_SIZE;
1268                         } else {
1269                                 size = 0xc0;
1270                                 num_iso_pack = 80;
1271                                 buf_size = num_iso_pack * size;
1272                         }
1273                         int num_bytes = num_iso_pack * size;
1274                         assert(size_t(num_bytes) <= buf_size);
1275 #if LIBUSB_API_VERSION >= 0x01000105
1276                         uint8_t *buf = libusb_dev_mem_alloc(devh, num_bytes);
1277 #else
1278                         uint8_t *buf = nullptr;
1279 #endif
1280                         if (buf == nullptr) {
1281                                 fprintf(stderr, "Failed to allocate persistent DMA memory ");
1282 #if LIBUSB_API_VERSION >= 0x01000105
1283                                 fprintf(stderr, "(probably too old kernel; use 4.6.0 or newer).\n");
1284 #else
1285                                 fprintf(stderr, "(compiled against too old libusb-1.0).\n");
1286 #endif
1287                                 fprintf(stderr, "Will go slower, and likely fail due to memory fragmentation after a few hours.\n");
1288                                 buf = new uint8_t[num_bytes];
1289                         }
1290
1291                         xfr = libusb_alloc_transfer(num_iso_pack);
1292                         if (!xfr) {
1293                                 fprintf(stderr, "oom\n");
1294                                 exit(1);
1295                         }
1296
1297                         int ep = LIBUSB_ENDPOINT_IN | e;
1298                         libusb_fill_iso_transfer(xfr, devh, ep, buf, buf_size,
1299                                 num_iso_pack, cb_xfr, nullptr, 0);
1300                         libusb_set_iso_packet_lengths(xfr, size);
1301                         xfr->user_data = this;
1302
1303                         if (e == 3) {
1304                                 change_xfer_size_for_width(assumed_frame_width, xfr);
1305                         }
1306
1307                         iso_xfrs.push_back(xfr);
1308                 }
1309         }
1310 }
1311
1312 void BMUSBCapture::start_bm_capture()
1313 {
1314         int i = 0;
1315         for (libusb_transfer *xfr : iso_xfrs) {
1316                 int rc = libusb_submit_transfer(xfr);
1317                 ++i;
1318                 if (rc < 0) {
1319                         //printf("num_bytes=%d\n", num_bytes);
1320                         fprintf(stderr, "Error submitting iso to endpoint 0x%02x, number %d: %s\n",
1321                                 xfr->endpoint, i, libusb_error_name(rc));
1322                         exit(1);
1323                 }
1324         }
1325
1326
1327 #if 0
1328         libusb_release_interface(devh, 0);
1329 out:
1330         if (devh)
1331                 libusb_close(devh);
1332         libusb_exit(nullptr);
1333         return rc;
1334 #endif
1335 }
1336
1337 void BMUSBCapture::stop_dequeue_thread()
1338 {
1339         dequeue_thread_should_quit = true;
1340         queues_not_empty.notify_all();
1341         dequeue_thread.join();
1342 }
1343
1344 void BMUSBCapture::start_bm_thread()
1345 {
1346         // Devices leaving are discovered by seeing the isochronous packets
1347         // coming back with errors, so only care about devices joining.
1348         if (card_connected_callback != nullptr) {
1349                 if (libusb_hotplug_register_callback(
1350                         nullptr, LIBUSB_HOTPLUG_EVENT_DEVICE_ARRIVED, hotplug_existing_devices ? LIBUSB_HOTPLUG_ENUMERATE : LIBUSB_HOTPLUG_NO_FLAGS,
1351                         USB_VENDOR_BLACKMAGIC, LIBUSB_HOTPLUG_MATCH_ANY, LIBUSB_HOTPLUG_MATCH_ANY,
1352                         &BMUSBCapture::cb_hotplug, nullptr, nullptr) < 0) {
1353                         fprintf(stderr, "libusb_hotplug_register_callback() failed\n");
1354                         exit(1);
1355                 }
1356         }
1357
1358         should_quit = false;
1359         usb_thread = thread(&BMUSBCapture::usb_thread_func);
1360 }
1361
1362 void BMUSBCapture::stop_bm_thread()
1363 {
1364         should_quit = true;
1365         usb_thread.join();
1366 }
1367
1368 map<uint32_t, VideoMode> BMUSBCapture::get_available_video_modes() const
1369 {
1370         // The USB3 cards autodetect, and seem to have no provision for forcing modes.
1371         VideoMode auto_mode;
1372         auto_mode.name = "Autodetect";
1373         auto_mode.autodetect = true;
1374         return {{ 0, auto_mode }};
1375 }
1376
1377 uint32_t BMUSBCapture::get_current_video_mode() const
1378 {
1379         return 0;  // Matches get_available_video_modes().
1380 }
1381
1382 void BMUSBCapture::set_video_mode(uint32_t video_mode_id)
1383 {
1384         assert(video_mode_id == 0);  // Matches get_available_video_modes().
1385 }
1386
1387 std::map<uint32_t, std::string> BMUSBCapture::get_available_video_inputs() const
1388 {
1389         return {
1390                 { 0x00000000, "HDMI/SDI" },
1391                 { 0x02000000, "Component" },
1392                 { 0x04000000, "Composite" },
1393                 { 0x06000000, "S-video" }
1394         };
1395 }
1396
1397 void BMUSBCapture::set_video_input(uint32_t video_input_id)
1398 {
1399         assert((video_input_id & ~0x06000000) == 0);
1400         current_video_input = video_input_id;
1401         update_capture_mode();
1402 }
1403
1404 std::map<uint32_t, std::string> BMUSBCapture::get_available_audio_inputs() const
1405 {
1406         return {
1407                 { 0x00000000, "Embedded" },
1408                 { 0x10000000, "Analog" }
1409         };
1410 }
1411
1412 void BMUSBCapture::set_audio_input(uint32_t audio_input_id)
1413 {
1414         assert((audio_input_id & ~0x10000000) == 0);
1415         current_audio_input = audio_input_id;
1416         update_capture_mode();
1417 }
1418
1419 void BMUSBCapture::update_capture_mode()
1420 {
1421         // clearing the 0x20000000 bit seems to activate 10-bit capture (v210).
1422         // clearing the 0x08000000 bit seems to change the capture format (other source?)
1423         uint32_t mode = htonl(0x29000000 | current_video_input | current_audio_input);
1424
1425         int rc = libusb_control_transfer(devh, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
1426                 /*request=*/215, /*value=*/0, /*index=*/0, (unsigned char *)&mode, sizeof(mode), /*timeout=*/0);
1427         if (rc < 0) {
1428                 fprintf(stderr, "Error on setting mode: %s\n", libusb_error_name(rc));
1429                 exit(1);
1430         }
1431 }
1432
1433 }  // namespace bmusb