]> git.sesse.net Git - nageru/blob - flow.cpp
Compute diffusivity instead of smoothness, which saves a flow-size texture; shaves...
[nageru] / flow.cpp
1 #define NO_SDL_GLEXT 1
2
3 #include <epoxy/gl.h>
4
5 #include <SDL2/SDL.h>
6 #include <SDL2/SDL_error.h>
7 #include <SDL2/SDL_events.h>
8 #include <SDL2/SDL_image.h>
9 #include <SDL2/SDL_keyboard.h>
10 #include <SDL2/SDL_mouse.h>
11 #include <SDL2/SDL_video.h>
12
13 #include <assert.h>
14 #include <getopt.h>
15 #include <stdio.h>
16 #include <unistd.h>
17
18 #include "gpu_timers.h"
19 #include "util.h"
20
21 #include <algorithm>
22 #include <deque>
23 #include <memory>
24 #include <map>
25 #include <stack>
26 #include <vector>
27
28 #define BUFFER_OFFSET(i) ((char *)nullptr + (i))
29
30 using namespace std;
31
32 SDL_Window *window;
33
34 // Operating point 3 (10 Hz on CPU, excluding preprocessing).
35 constexpr float patch_overlap_ratio = 0.75f;
36 constexpr unsigned coarsest_level = 5;
37 constexpr unsigned finest_level = 1;
38 constexpr unsigned patch_size_pixels = 12;
39
40 // Weighting constants for the different parts of the variational refinement.
41 // These don't correspond 1:1 to the values given in the DIS paper,
42 // since we have different normalizations and ranges in some cases.
43 // These are found through a simple grid search on some MPI-Sintel data,
44 // although the error (EPE) seems to be fairly insensitive to the precise values.
45 // Only the relative values matter, so we fix alpha (the smoothness constant)
46 // at unity and tweak the others.
47 float vr_alpha = 1.0f, vr_delta = 0.25f, vr_gamma = 0.25f;
48
49 bool enable_timing = true;
50 bool detailed_timing = false;
51 bool enable_variational_refinement = true;  // Just for debugging.
52 bool enable_interpolation = false;
53
54 // Some global OpenGL objects.
55 // TODO: These should really be part of DISComputeFlow.
56 GLuint nearest_sampler, linear_sampler, zero_border_sampler;
57 GLuint vertex_vbo;
58
59 // Structures for asynchronous readback. We assume everything is the same size (and GL_RG16F).
60 struct ReadInProgress {
61         GLuint pbo;
62         string filename0, filename1;
63         string flow_filename, ppm_filename;  // Either may be empty for no write.
64 };
65 stack<GLuint> spare_pbos;
66 deque<ReadInProgress> reads_in_progress;
67
68 int find_num_levels(int width, int height)
69 {
70         int levels = 1;
71         for (int w = width, h = height; w > 1 || h > 1; ) {
72                 w >>= 1;
73                 h >>= 1;
74                 ++levels;
75         }
76         return levels;
77 }
78
79 string read_file(const string &filename)
80 {
81         FILE *fp = fopen(filename.c_str(), "r");
82         if (fp == nullptr) {
83                 perror(filename.c_str());
84                 exit(1);
85         }
86
87         int ret = fseek(fp, 0, SEEK_END);
88         if (ret == -1) {
89                 perror("fseek(SEEK_END)");
90                 exit(1);
91         }
92
93         int size = ftell(fp);
94
95         ret = fseek(fp, 0, SEEK_SET);
96         if (ret == -1) {
97                 perror("fseek(SEEK_SET)");
98                 exit(1);
99         }
100
101         string str;
102         str.resize(size);
103         ret = fread(&str[0], size, 1, fp);
104         if (ret == -1) {
105                 perror("fread");
106                 exit(1);
107         }
108         if (ret == 0) {
109                 fprintf(stderr, "Short read when trying to read %d bytes from %s\n",
110                                 size, filename.c_str());
111                 exit(1);
112         }
113         fclose(fp);
114
115         return str;
116 }
117
118
119 GLuint compile_shader(const string &shader_src, GLenum type)
120 {
121         GLuint obj = glCreateShader(type);
122         const GLchar* source[] = { shader_src.data() };
123         const GLint length[] = { (GLint)shader_src.size() };
124         glShaderSource(obj, 1, source, length);
125         glCompileShader(obj);
126
127         GLchar info_log[4096];
128         GLsizei log_length = sizeof(info_log) - 1;
129         glGetShaderInfoLog(obj, log_length, &log_length, info_log);
130         info_log[log_length] = 0;
131         if (strlen(info_log) > 0) {
132                 fprintf(stderr, "Shader compile log: %s\n", info_log);
133         }
134
135         GLint status;
136         glGetShaderiv(obj, GL_COMPILE_STATUS, &status);
137         if (status == GL_FALSE) {
138                 // Add some line numbers to easier identify compile errors.
139                 string src_with_lines = "/*   1 */ ";
140                 size_t lineno = 1;
141                 for (char ch : shader_src) {
142                         src_with_lines.push_back(ch);
143                         if (ch == '\n') {
144                                 char buf[32];
145                                 snprintf(buf, sizeof(buf), "/* %3zu */ ", ++lineno);
146                                 src_with_lines += buf;
147                         }
148                 }
149
150                 fprintf(stderr, "Failed to compile shader:\n%s\n", src_with_lines.c_str());
151                 exit(1);
152         }
153
154         return obj;
155 }
156
157 enum MipmapPolicy {
158         WITHOUT_MIPMAPS,
159         WITH_MIPMAPS
160 };
161
162 GLuint load_texture(const char *filename, unsigned *width_ret, unsigned *height_ret, MipmapPolicy mipmaps)
163 {
164         SDL_Surface *surf = IMG_Load(filename);
165         if (surf == nullptr) {
166                 fprintf(stderr, "IMG_Load(%s): %s\n", filename, IMG_GetError());
167                 exit(1);
168         }
169
170         // For whatever reason, SDL doesn't support converting to YUV surfaces
171         // nor grayscale, so we'll do it ourselves.
172         SDL_Surface *rgb_surf = SDL_ConvertSurfaceFormat(surf, SDL_PIXELFORMAT_RGBA32, /*flags=*/0);
173         if (rgb_surf == nullptr) {
174                 fprintf(stderr, "SDL_ConvertSurfaceFormat(%s): %s\n", filename, SDL_GetError());
175                 exit(1);
176         }
177
178         SDL_FreeSurface(surf);
179
180         unsigned width = rgb_surf->w, height = rgb_surf->h;
181         const uint8_t *sptr = (uint8_t *)rgb_surf->pixels;
182         unique_ptr<uint8_t[]> pix(new uint8_t[width * height * 4]);
183
184         // Extract the Y component, and convert to bottom-left origin.
185         for (unsigned y = 0; y < height; ++y) {
186                 unsigned y2 = height - 1 - y;
187                 memcpy(pix.get() + y * width * 4, sptr + y2 * rgb_surf->pitch, width * 4);
188         }
189         SDL_FreeSurface(rgb_surf);
190
191         int num_levels = (mipmaps == WITH_MIPMAPS) ? find_num_levels(width, height) : 1;
192
193         GLuint tex;
194         glCreateTextures(GL_TEXTURE_2D, 1, &tex);
195         glTextureStorage2D(tex, num_levels, GL_RGBA8, width, height);
196         glTextureSubImage2D(tex, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pix.get());
197
198         if (mipmaps == WITH_MIPMAPS) {
199                 glGenerateTextureMipmap(tex);
200         }
201
202         *width_ret = width;
203         *height_ret = height;
204
205         return tex;
206 }
207
208 GLuint link_program(GLuint vs_obj, GLuint fs_obj)
209 {
210         GLuint program = glCreateProgram();
211         glAttachShader(program, vs_obj);
212         glAttachShader(program, fs_obj);
213         glLinkProgram(program);
214         GLint success;
215         glGetProgramiv(program, GL_LINK_STATUS, &success);
216         if (success == GL_FALSE) {
217                 GLchar error_log[1024] = {0};
218                 glGetProgramInfoLog(program, 1024, nullptr, error_log);
219                 fprintf(stderr, "Error linking program: %s\n", error_log);
220                 exit(1);
221         }
222         return program;
223 }
224
225 void bind_sampler(GLuint program, GLint location, GLuint texture_unit, GLuint tex, GLuint sampler)
226 {
227         if (location == -1) {
228                 return;
229         }
230
231         glBindTextureUnit(texture_unit, tex);
232         glBindSampler(texture_unit, sampler);
233         glProgramUniform1i(program, location, texture_unit);
234 }
235
236 // A class that caches FBOs that render to a given set of textures.
237 // It never frees anything, so it is only suitable for rendering to
238 // the same (small) set of textures over and over again.
239 template<size_t num_elements>
240 class PersistentFBOSet {
241 public:
242         void render_to(const array<GLuint, num_elements> &textures);
243
244         // Convenience wrappers.
245         void render_to(GLuint texture0) {
246                 render_to({{texture0}});
247         }
248
249         void render_to(GLuint texture0, GLuint texture1) {
250                 render_to({{texture0, texture1}});
251         }
252
253         void render_to(GLuint texture0, GLuint texture1, GLuint texture2) {
254                 render_to({{texture0, texture1, texture2}});
255         }
256
257         void render_to(GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
258                 render_to({{texture0, texture1, texture2, texture3}});
259         }
260
261 private:
262         // TODO: Delete these on destruction.
263         map<array<GLuint, num_elements>, GLuint> fbos;
264 };
265
266 template<size_t num_elements>
267 void PersistentFBOSet<num_elements>::render_to(const array<GLuint, num_elements> &textures)
268 {
269         auto it = fbos.find(textures);
270         if (it != fbos.end()) {
271                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
272                 return;
273         }
274
275         GLuint fbo;
276         glCreateFramebuffers(1, &fbo);
277         GLenum bufs[num_elements];
278         for (size_t i = 0; i < num_elements; ++i) {
279                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
280                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
281         }
282         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
283
284         fbos[textures] = fbo;
285         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
286 }
287
288 // Same, but with a depth texture.
289 template<size_t num_elements>
290 class PersistentFBOSetWithDepth {
291 public:
292         void render_to(GLuint depth_tex, const array<GLuint, num_elements> &textures);
293
294         // Convenience wrappers.
295         void render_to(GLuint depth_tex, GLuint texture0) {
296                 render_to(depth_tex, {{texture0}});
297         }
298
299         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1) {
300                 render_to(depth_tex, {{texture0, texture1}});
301         }
302
303         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1, GLuint texture2) {
304                 render_to(depth_tex, {{texture0, texture1, texture2}});
305         }
306
307         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
308                 render_to(depth_tex, {{texture0, texture1, texture2, texture3}});
309         }
310
311 private:
312         // TODO: Delete these on destruction.
313         map<pair<GLuint, array<GLuint, num_elements>>, GLuint> fbos;
314 };
315
316 template<size_t num_elements>
317 void PersistentFBOSetWithDepth<num_elements>::render_to(GLuint depth_tex, const array<GLuint, num_elements> &textures)
318 {
319         auto key = make_pair(depth_tex, textures);
320
321         auto it = fbos.find(key);
322         if (it != fbos.end()) {
323                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
324                 return;
325         }
326
327         GLuint fbo;
328         glCreateFramebuffers(1, &fbo);
329         GLenum bufs[num_elements];
330         glNamedFramebufferTexture(fbo, GL_DEPTH_ATTACHMENT, depth_tex, 0);
331         for (size_t i = 0; i < num_elements; ++i) {
332                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
333                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
334         }
335         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
336
337         fbos[key] = fbo;
338         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
339 }
340
341 // Convert RGB to grayscale, using Rec. 709 coefficients.
342 class GrayscaleConversion {
343 public:
344         GrayscaleConversion();
345         void exec(GLint tex, GLint gray_tex, int width, int height);
346
347 private:
348         PersistentFBOSet<1> fbos;
349         GLuint gray_vs_obj;
350         GLuint gray_fs_obj;
351         GLuint gray_program;
352         GLuint gray_vao;
353
354         GLuint uniform_tex;
355 };
356
357 GrayscaleConversion::GrayscaleConversion()
358 {
359         gray_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
360         gray_fs_obj = compile_shader(read_file("gray.frag"), GL_FRAGMENT_SHADER);
361         gray_program = link_program(gray_vs_obj, gray_fs_obj);
362
363         // Set up the VAO containing all the required position/texcoord data.
364         glCreateVertexArrays(1, &gray_vao);
365         glBindVertexArray(gray_vao);
366
367         GLint position_attrib = glGetAttribLocation(gray_program, "position");
368         glEnableVertexArrayAttrib(gray_vao, position_attrib);
369         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
370
371         uniform_tex = glGetUniformLocation(gray_program, "tex");
372 }
373
374 void GrayscaleConversion::exec(GLint tex, GLint gray_tex, int width, int height)
375 {
376         glUseProgram(gray_program);
377         bind_sampler(gray_program, uniform_tex, 0, tex, nearest_sampler);
378
379         glViewport(0, 0, width, height);
380         fbos.render_to(gray_tex);
381         glBindVertexArray(gray_vao);
382         glUseProgram(gray_program);
383         glDisable(GL_BLEND);
384         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
385 }
386
387 // Compute gradients in every point, used for the motion search.
388 // The DIS paper doesn't actually mention how these are computed,
389 // but seemingly, a 3x3 Sobel operator is used here (at least in
390 // later versions of the code), while a [1 -8 0 8 -1] kernel is
391 // used for all the derivatives in the variational refinement part
392 // (which borrows code from DeepFlow). This is inconsistent,
393 // but I guess we're better off with staying with the original
394 // decisions until we actually know having different ones would be better.
395 class Sobel {
396 public:
397         Sobel();
398         void exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height);
399
400 private:
401         PersistentFBOSet<1> fbos;
402         GLuint sobel_vs_obj;
403         GLuint sobel_fs_obj;
404         GLuint sobel_program;
405
406         GLuint uniform_tex;
407 };
408
409 Sobel::Sobel()
410 {
411         sobel_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
412         sobel_fs_obj = compile_shader(read_file("sobel.frag"), GL_FRAGMENT_SHADER);
413         sobel_program = link_program(sobel_vs_obj, sobel_fs_obj);
414
415         uniform_tex = glGetUniformLocation(sobel_program, "tex");
416 }
417
418 void Sobel::exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height)
419 {
420         glUseProgram(sobel_program);
421         bind_sampler(sobel_program, uniform_tex, 0, tex0_view, nearest_sampler);
422
423         glViewport(0, 0, level_width, level_height);
424         fbos.render_to(grad0_tex);
425         glUseProgram(sobel_program);
426         glDisable(GL_BLEND);
427         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
428 }
429
430 // Motion search to find the initial flow. See motion_search.frag for documentation.
431 class MotionSearch {
432 public:
433         MotionSearch();
434         void exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches);
435
436 private:
437         PersistentFBOSet<1> fbos;
438
439         GLuint motion_vs_obj;
440         GLuint motion_fs_obj;
441         GLuint motion_search_program;
442
443         GLuint uniform_inv_image_size, uniform_inv_prev_level_size;
444         GLuint uniform_image0_tex, uniform_image1_tex, uniform_grad0_tex, uniform_flow_tex;
445 };
446
447 MotionSearch::MotionSearch()
448 {
449         motion_vs_obj = compile_shader(read_file("motion_search.vert"), GL_VERTEX_SHADER);
450         motion_fs_obj = compile_shader(read_file("motion_search.frag"), GL_FRAGMENT_SHADER);
451         motion_search_program = link_program(motion_vs_obj, motion_fs_obj);
452
453         uniform_inv_image_size = glGetUniformLocation(motion_search_program, "inv_image_size");
454         uniform_inv_prev_level_size = glGetUniformLocation(motion_search_program, "inv_prev_level_size");
455         uniform_image0_tex = glGetUniformLocation(motion_search_program, "image0_tex");
456         uniform_image1_tex = glGetUniformLocation(motion_search_program, "image1_tex");
457         uniform_grad0_tex = glGetUniformLocation(motion_search_program, "grad0_tex");
458         uniform_flow_tex = glGetUniformLocation(motion_search_program, "flow_tex");
459 }
460
461 void MotionSearch::exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches)
462 {
463         glUseProgram(motion_search_program);
464
465         bind_sampler(motion_search_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
466         bind_sampler(motion_search_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
467         bind_sampler(motion_search_program, uniform_grad0_tex, 2, grad0_tex, zero_border_sampler);
468         bind_sampler(motion_search_program, uniform_flow_tex, 3, flow_tex, linear_sampler);
469
470         glProgramUniform2f(motion_search_program, uniform_inv_image_size, 1.0f / level_width, 1.0f / level_height);
471         glProgramUniform2f(motion_search_program, uniform_inv_prev_level_size, 1.0f / prev_level_width, 1.0f / prev_level_height);
472
473         glViewport(0, 0, width_patches, height_patches);
474         fbos.render_to(flow_out_tex);
475         glUseProgram(motion_search_program);
476         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
477 }
478
479 // Do “densification”, ie., upsampling of the flow patches to the flow field
480 // (the same size as the image at this level). We draw one quad per patch
481 // over its entire covered area (using instancing in the vertex shader),
482 // and then weight the contributions in the pixel shader by post-warp difference.
483 // This is equation (3) in the paper.
484 //
485 // We accumulate the flow vectors in the R/G channels (for u/v) and the total
486 // weight in the B channel. Dividing R and G by B gives the normalized values.
487 class Densify {
488 public:
489         Densify();
490         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches);
491
492 private:
493         PersistentFBOSet<1> fbos;
494
495         GLuint densify_vs_obj;
496         GLuint densify_fs_obj;
497         GLuint densify_program;
498
499         GLuint uniform_patch_size;
500         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
501 };
502
503 Densify::Densify()
504 {
505         densify_vs_obj = compile_shader(read_file("densify.vert"), GL_VERTEX_SHADER);
506         densify_fs_obj = compile_shader(read_file("densify.frag"), GL_FRAGMENT_SHADER);
507         densify_program = link_program(densify_vs_obj, densify_fs_obj);
508
509         uniform_patch_size = glGetUniformLocation(densify_program, "patch_size");
510         uniform_image0_tex = glGetUniformLocation(densify_program, "image0_tex");
511         uniform_image1_tex = glGetUniformLocation(densify_program, "image1_tex");
512         uniform_flow_tex = glGetUniformLocation(densify_program, "flow_tex");
513 }
514
515 void Densify::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches)
516 {
517         glUseProgram(densify_program);
518
519         bind_sampler(densify_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
520         bind_sampler(densify_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
521         bind_sampler(densify_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
522
523         glProgramUniform2f(densify_program, uniform_patch_size,
524                 float(patch_size_pixels) / level_width,
525                 float(patch_size_pixels) / level_height);
526
527         glViewport(0, 0, level_width, level_height);
528         glEnable(GL_BLEND);
529         glBlendFunc(GL_ONE, GL_ONE);
530         fbos.render_to(dense_flow_tex);
531         glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
532         glClear(GL_COLOR_BUFFER_BIT);
533         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width_patches * height_patches);
534 }
535
536 // Warp I_1 to I_w, and then compute the mean (I) and difference (I_t) of
537 // I_0 and I_w. The prewarping is what enables us to solve the variational
538 // flow for du,dv instead of u,v.
539 //
540 // Also calculates the normalized flow, ie. divides by z (this is needed because
541 // Densify works by additive blending) and multiplies by the image size.
542 //
543 // See variational_refinement.txt for more information.
544 class Prewarp {
545 public:
546         Prewarp();
547         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint normalized_flow_tex, GLuint I_tex, GLuint I_t_tex, int level_width, int level_height);
548
549 private:
550         PersistentFBOSet<3> fbos;
551
552         GLuint prewarp_vs_obj;
553         GLuint prewarp_fs_obj;
554         GLuint prewarp_program;
555
556         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
557 };
558
559 Prewarp::Prewarp()
560 {
561         prewarp_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
562         prewarp_fs_obj = compile_shader(read_file("prewarp.frag"), GL_FRAGMENT_SHADER);
563         prewarp_program = link_program(prewarp_vs_obj, prewarp_fs_obj);
564
565         uniform_image0_tex = glGetUniformLocation(prewarp_program, "image0_tex");
566         uniform_image1_tex = glGetUniformLocation(prewarp_program, "image1_tex");
567         uniform_flow_tex = glGetUniformLocation(prewarp_program, "flow_tex");
568 }
569
570 void Prewarp::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint I_tex, GLuint I_t_tex, GLuint normalized_flow_tex, int level_width, int level_height)
571 {
572         glUseProgram(prewarp_program);
573
574         bind_sampler(prewarp_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
575         bind_sampler(prewarp_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
576         bind_sampler(prewarp_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
577
578         glViewport(0, 0, level_width, level_height);
579         glDisable(GL_BLEND);
580         fbos.render_to(I_tex, I_t_tex, normalized_flow_tex);
581         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
582 }
583
584 // From I, calculate the partial derivatives I_x and I_y. We use a four-tap
585 // central difference filter, since apparently, that's tradition (I haven't
586 // measured quality versus a more normal 0.5 (I[x+1] - I[x-1]).)
587 // The coefficients come from
588 //
589 //   https://en.wikipedia.org/wiki/Finite_difference_coefficient
590 //
591 // Also computes β_0, since it depends only on I_x and I_y.
592 class Derivatives {
593 public:
594         Derivatives();
595         void exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height);
596
597 private:
598         PersistentFBOSet<2> fbos;
599
600         GLuint derivatives_vs_obj;
601         GLuint derivatives_fs_obj;
602         GLuint derivatives_program;
603
604         GLuint uniform_tex;
605 };
606
607 Derivatives::Derivatives()
608 {
609         derivatives_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
610         derivatives_fs_obj = compile_shader(read_file("derivatives.frag"), GL_FRAGMENT_SHADER);
611         derivatives_program = link_program(derivatives_vs_obj, derivatives_fs_obj);
612
613         uniform_tex = glGetUniformLocation(derivatives_program, "tex");
614 }
615
616 void Derivatives::exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height)
617 {
618         glUseProgram(derivatives_program);
619
620         bind_sampler(derivatives_program, uniform_tex, 0, input_tex, nearest_sampler);
621
622         glViewport(0, 0, level_width, level_height);
623         glDisable(GL_BLEND);
624         fbos.render_to(I_x_y_tex, beta_0_tex);
625         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
626 }
627
628 // Calculate the diffusivity for each pixels, g(x,y). Smoothness (s) will
629 // be calculated in the shaders on-the-fly by sampling in-between two
630 // neighboring g(x,y) pixels, plus a border tweak to make sure we get
631 // zero smoothness at the border.
632 //
633 // See variational_refinement.txt for more information.
634 class ComputeDiffusivity {
635 public:
636         ComputeDiffusivity();
637         void exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow);
638
639 private:
640         PersistentFBOSet<1> fbos;
641
642         GLuint diffusivity_vs_obj;
643         GLuint diffusivity_fs_obj;
644         GLuint diffusivity_program;
645
646         GLuint uniform_flow_tex, uniform_diff_flow_tex;
647         GLuint uniform_alpha, uniform_zero_diff_flow;
648 };
649
650 ComputeDiffusivity::ComputeDiffusivity()
651 {
652         diffusivity_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
653         diffusivity_fs_obj = compile_shader(read_file("diffusivity.frag"), GL_FRAGMENT_SHADER);
654         diffusivity_program = link_program(diffusivity_vs_obj, diffusivity_fs_obj);
655
656         uniform_flow_tex = glGetUniformLocation(diffusivity_program, "flow_tex");
657         uniform_diff_flow_tex = glGetUniformLocation(diffusivity_program, "diff_flow_tex");
658         uniform_alpha = glGetUniformLocation(diffusivity_program, "alpha");
659         uniform_zero_diff_flow = glGetUniformLocation(diffusivity_program, "zero_diff_flow");
660 }
661
662 void ComputeDiffusivity::exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow)
663 {
664         glUseProgram(diffusivity_program);
665
666         bind_sampler(diffusivity_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
667         bind_sampler(diffusivity_program, uniform_diff_flow_tex, 1, diff_flow_tex, nearest_sampler);
668         glProgramUniform1f(diffusivity_program, uniform_alpha, vr_alpha);
669         glProgramUniform1i(diffusivity_program, uniform_zero_diff_flow, zero_diff_flow);
670
671         glViewport(0, 0, level_width, level_height);
672
673         glDisable(GL_BLEND);
674         fbos.render_to(diffusivity_tex);
675         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
676 }
677
678 // Set up the equations set (two equations in two unknowns, per pixel).
679 // We store five floats; the three non-redundant elements of the 2x2 matrix (A)
680 // as 32-bit floats, and the two elements on the right-hand side (b) as 16-bit
681 // floats. (Actually, we store the inverse of the diagonal elements, because
682 // we only ever need to divide by them.) This fits into four u32 values;
683 // R, G, B for the matrix (the last element is symmetric) and A for the two b values.
684 // All the values of the energy term (E_I, E_G, E_S), except the smoothness
685 // terms that depend on other pixels, are calculated in one pass.
686 //
687 // See variational_refinement.txt for more information.
688 class SetupEquations {
689 public:
690         SetupEquations();
691         void exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_tex, int level_width, int level_height, bool zero_diff_flow);
692
693 private:
694         PersistentFBOSet<1> fbos;
695
696         GLuint equations_vs_obj;
697         GLuint equations_fs_obj;
698         GLuint equations_program;
699
700         GLuint uniform_I_x_y_tex, uniform_I_t_tex;
701         GLuint uniform_diff_flow_tex, uniform_base_flow_tex;
702         GLuint uniform_beta_0_tex;
703         GLuint uniform_diffusivity_tex;
704         GLuint uniform_gamma, uniform_delta, uniform_zero_diff_flow;
705 };
706
707 SetupEquations::SetupEquations()
708 {
709         equations_vs_obj = compile_shader(read_file("equations.vert"), GL_VERTEX_SHADER);
710         equations_fs_obj = compile_shader(read_file("equations.frag"), GL_FRAGMENT_SHADER);
711         equations_program = link_program(equations_vs_obj, equations_fs_obj);
712
713         uniform_I_x_y_tex = glGetUniformLocation(equations_program, "I_x_y_tex");
714         uniform_I_t_tex = glGetUniformLocation(equations_program, "I_t_tex");
715         uniform_diff_flow_tex = glGetUniformLocation(equations_program, "diff_flow_tex");
716         uniform_base_flow_tex = glGetUniformLocation(equations_program, "base_flow_tex");
717         uniform_beta_0_tex = glGetUniformLocation(equations_program, "beta_0_tex");
718         uniform_diffusivity_tex = glGetUniformLocation(equations_program, "diffusivity_tex");
719         uniform_gamma = glGetUniformLocation(equations_program, "gamma");
720         uniform_delta = glGetUniformLocation(equations_program, "delta");
721         uniform_zero_diff_flow = glGetUniformLocation(equations_program, "zero_diff_flow");
722 }
723
724 void SetupEquations::exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint base_flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_tex, int level_width, int level_height, bool zero_diff_flow)
725 {
726         glUseProgram(equations_program);
727
728         bind_sampler(equations_program, uniform_I_x_y_tex, 0, I_x_y_tex, nearest_sampler);
729         bind_sampler(equations_program, uniform_I_t_tex, 1, I_t_tex, nearest_sampler);
730         bind_sampler(equations_program, uniform_diff_flow_tex, 2, diff_flow_tex, nearest_sampler);
731         bind_sampler(equations_program, uniform_base_flow_tex, 3, base_flow_tex, nearest_sampler);
732         bind_sampler(equations_program, uniform_beta_0_tex, 4, beta_0_tex, nearest_sampler);
733         bind_sampler(equations_program, uniform_diffusivity_tex, 5, diffusivity_tex, zero_border_sampler);
734         glProgramUniform1f(equations_program, uniform_delta, vr_delta);
735         glProgramUniform1f(equations_program, uniform_gamma, vr_gamma);
736         glProgramUniform1i(equations_program, uniform_zero_diff_flow, zero_diff_flow);
737
738         glViewport(0, 0, level_width, level_height);
739         glDisable(GL_BLEND);
740         fbos.render_to(equation_tex);
741         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
742 }
743
744 // Actually solve the equation sets made by SetupEquations, by means of
745 // successive over-relaxation (SOR).
746 //
747 // See variational_refinement.txt for more information.
748 class SOR {
749 public:
750         SOR();
751         void exec(GLuint diff_flow_tex, GLuint equation_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, ScopedTimer *sor_timer);
752
753 private:
754         PersistentFBOSet<1> fbos;
755
756         GLuint sor_vs_obj;
757         GLuint sor_fs_obj;
758         GLuint sor_program;
759
760         GLuint uniform_diff_flow_tex;
761         GLuint uniform_equation_tex;
762         GLuint uniform_diffusivity_tex;
763         GLuint uniform_phase, uniform_zero_diff_flow;
764 };
765
766 SOR::SOR()
767 {
768         sor_vs_obj = compile_shader(read_file("sor.vert"), GL_VERTEX_SHADER);
769         sor_fs_obj = compile_shader(read_file("sor.frag"), GL_FRAGMENT_SHADER);
770         sor_program = link_program(sor_vs_obj, sor_fs_obj);
771
772         uniform_diff_flow_tex = glGetUniformLocation(sor_program, "diff_flow_tex");
773         uniform_equation_tex = glGetUniformLocation(sor_program, "equation_tex");
774         uniform_diffusivity_tex = glGetUniformLocation(sor_program, "diffusivity_tex");
775         uniform_phase = glGetUniformLocation(sor_program, "phase");
776         uniform_zero_diff_flow = glGetUniformLocation(sor_program, "zero_diff_flow");
777 }
778
779 void SOR::exec(GLuint diff_flow_tex, GLuint equation_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, ScopedTimer *sor_timer)
780 {
781         glUseProgram(sor_program);
782
783         bind_sampler(sor_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
784         bind_sampler(sor_program, uniform_diffusivity_tex, 1, diffusivity_tex, zero_border_sampler);
785         bind_sampler(sor_program, uniform_equation_tex, 2, equation_tex, nearest_sampler);
786
787         glProgramUniform1i(sor_program, uniform_zero_diff_flow, zero_diff_flow);
788
789         // NOTE: We bind to the texture we are rendering from, but we never write any value
790         // that we read in the same shader pass (we call discard for red values when we compute
791         // black, and vice versa), and we have barriers between the passes, so we're fine
792         // as per the spec.
793         glViewport(0, 0, level_width, level_height);
794         glDisable(GL_BLEND);
795         fbos.render_to(diff_flow_tex);
796
797         for (int i = 0; i < num_iterations; ++i) {
798                 {
799                         ScopedTimer timer("Red pass", sor_timer);
800                         glProgramUniform1i(sor_program, uniform_phase, 0);
801                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
802                         glTextureBarrier();
803                 }
804                 {
805                         ScopedTimer timer("Black pass", sor_timer);
806                         if (zero_diff_flow && i == 0) {
807                                 // Not zero anymore.
808                                 glProgramUniform1i(sor_program, uniform_zero_diff_flow, 0);
809                         }
810                         glProgramUniform1i(sor_program, uniform_phase, 1);
811                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
812                         if (i != num_iterations - 1) {
813                                 glTextureBarrier();
814                         }
815                 }
816         }
817 }
818
819 // Simply add the differential flow found by the variational refinement to the base flow.
820 // The output is in base_flow_tex; we don't need to make a new texture.
821 class AddBaseFlow {
822 public:
823         AddBaseFlow();
824         void exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height);
825
826 private:
827         PersistentFBOSet<1> fbos;
828
829         GLuint add_flow_vs_obj;
830         GLuint add_flow_fs_obj;
831         GLuint add_flow_program;
832
833         GLuint uniform_diff_flow_tex;
834 };
835
836 AddBaseFlow::AddBaseFlow()
837 {
838         add_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
839         add_flow_fs_obj = compile_shader(read_file("add_base_flow.frag"), GL_FRAGMENT_SHADER);
840         add_flow_program = link_program(add_flow_vs_obj, add_flow_fs_obj);
841
842         uniform_diff_flow_tex = glGetUniformLocation(add_flow_program, "diff_flow_tex");
843 }
844
845 void AddBaseFlow::exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height)
846 {
847         glUseProgram(add_flow_program);
848
849         bind_sampler(add_flow_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
850
851         glViewport(0, 0, level_width, level_height);
852         glEnable(GL_BLEND);
853         glBlendFunc(GL_ONE, GL_ONE);
854         fbos.render_to(base_flow_tex);
855
856         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
857 }
858
859 // Take a copy of the flow, bilinearly interpolated and scaled up.
860 class ResizeFlow {
861 public:
862         ResizeFlow();
863         void exec(GLuint in_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height);
864
865 private:
866         PersistentFBOSet<1> fbos;
867
868         GLuint resize_flow_vs_obj;
869         GLuint resize_flow_fs_obj;
870         GLuint resize_flow_program;
871
872         GLuint uniform_flow_tex;
873         GLuint uniform_scale_factor;
874 };
875
876 ResizeFlow::ResizeFlow()
877 {
878         resize_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
879         resize_flow_fs_obj = compile_shader(read_file("resize_flow.frag"), GL_FRAGMENT_SHADER);
880         resize_flow_program = link_program(resize_flow_vs_obj, resize_flow_fs_obj);
881
882         uniform_flow_tex = glGetUniformLocation(resize_flow_program, "flow_tex");
883         uniform_scale_factor = glGetUniformLocation(resize_flow_program, "scale_factor");
884 }
885
886 void ResizeFlow::exec(GLuint flow_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height)
887 {
888         glUseProgram(resize_flow_program);
889
890         bind_sampler(resize_flow_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
891
892         glProgramUniform2f(resize_flow_program, uniform_scale_factor, float(output_width) / input_width, float(output_height) / input_height);
893
894         glViewport(0, 0, output_width, output_height);
895         glDisable(GL_BLEND);
896         fbos.render_to(out_tex);
897
898         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
899 }
900
901 class TexturePool {
902 public:
903         GLuint get_texture(GLenum format, GLuint width, GLuint height);
904         void release_texture(GLuint tex_num);
905
906 private:
907         struct Texture {
908                 GLuint tex_num;
909                 GLenum format;
910                 GLuint width, height;
911                 bool in_use = false;
912         };
913         vector<Texture> textures;
914 };
915
916 class DISComputeFlow {
917 public:
918         DISComputeFlow(int width, int height);
919
920         enum ResizeStrategy {
921                 DO_NOT_RESIZE_FLOW,
922                 RESIZE_FLOW_TO_FULL_SIZE
923         };
924
925         // Returns a texture that must be released with release_texture()
926         // after use.
927         GLuint exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy);
928
929         void release_texture(GLuint tex) {
930                 pool.release_texture(tex);
931         }
932
933 private:
934         int width, height;
935         GLuint initial_flow_tex;
936         GLuint vertex_vbo, vao;
937         TexturePool pool;
938
939         // The various passes.
940         Sobel sobel;
941         MotionSearch motion_search;
942         Densify densify;
943         Prewarp prewarp;
944         Derivatives derivatives;
945         ComputeDiffusivity compute_diffusivity;
946         SetupEquations setup_equations;
947         SOR sor;
948         AddBaseFlow add_base_flow;
949         ResizeFlow resize_flow;
950 };
951
952 DISComputeFlow::DISComputeFlow(int width, int height)
953         : width(width), height(height)
954 {
955         // Make some samplers.
956         glCreateSamplers(1, &nearest_sampler);
957         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
958         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
959         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
960         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
961
962         glCreateSamplers(1, &linear_sampler);
963         glSamplerParameteri(linear_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
964         glSamplerParameteri(linear_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
965         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
966         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
967
968         // The smoothness is sampled so that once we get to a smoothness involving
969         // a value outside the border, the diffusivity between the two becomes zero.
970         // Similarly, gradients are zero outside the border, since the edge is taken
971         // to be constant.
972         glCreateSamplers(1, &zero_border_sampler);
973         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
974         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
975         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
976         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
977         float zero[] = { 0.0f, 0.0f, 0.0f, 0.0f };  // Note that zero alpha means we can also see whether we sampled outside the border or not.
978         glSamplerParameterfv(zero_border_sampler, GL_TEXTURE_BORDER_COLOR, zero);
979
980         // Initial flow is zero, 1x1.
981         glCreateTextures(GL_TEXTURE_2D, 1, &initial_flow_tex);
982         glTextureStorage2D(initial_flow_tex, 1, GL_RG16F, 1, 1);
983         glClearTexImage(initial_flow_tex, 0, GL_RG, GL_FLOAT, nullptr);
984
985         // Set up the vertex data that will be shared between all passes.
986         float vertices[] = {
987                 0.0f, 1.0f,
988                 0.0f, 0.0f,
989                 1.0f, 1.0f,
990                 1.0f, 0.0f,
991         };
992         glCreateBuffers(1, &vertex_vbo);
993         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
994
995         glCreateVertexArrays(1, &vao);
996         glBindVertexArray(vao);
997         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
998
999         GLint position_attrib = 0;  // Hard-coded in every vertex shader.
1000         glEnableVertexArrayAttrib(vao, position_attrib);
1001         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1002 }
1003
1004 GLuint DISComputeFlow::exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy)
1005 {
1006         int prev_level_width = 1, prev_level_height = 1;
1007         GLuint prev_level_flow_tex = initial_flow_tex;
1008
1009         GPUTimers timers;
1010
1011         glBindVertexArray(vao);
1012
1013         ScopedTimer total_timer("Total", &timers);
1014         for (int level = coarsest_level; level >= int(finest_level); --level) {
1015                 char timer_name[256];
1016                 snprintf(timer_name, sizeof(timer_name), "Level %d (%d x %d)", level, width >> level, height >> level);
1017                 ScopedTimer level_timer(timer_name, &total_timer);
1018
1019                 int level_width = width >> level;
1020                 int level_height = height >> level;
1021                 float patch_spacing_pixels = patch_size_pixels * (1.0f - patch_overlap_ratio);
1022
1023                 // Make sure we have patches at least every Nth pixel, e.g. for width=9
1024                 // and patch_spacing=3 (the default), we put out patch centers in
1025                 // x=0, x=3, x=6, x=9, which is four patches. The fragment shader will
1026                 // lock all the centers to integer coordinates if needed.
1027                 int width_patches = 1 + ceil(level_width / patch_spacing_pixels);
1028                 int height_patches = 1 + ceil(level_height / patch_spacing_pixels);
1029
1030                 // Make sure we always read from the correct level; the chosen
1031                 // mipmapping could otherwise be rather unpredictable, especially
1032                 // during motion search.
1033                 GLuint tex0_view, tex1_view;
1034                 glGenTextures(1, &tex0_view);
1035                 glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_R8, level, 1, 0, 1);
1036                 glGenTextures(1, &tex1_view);
1037                 glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_R8, level, 1, 0, 1);
1038
1039                 // Create a new texture; we could be fancy and render use a multi-level
1040                 // texture, but meh.
1041                 GLuint grad0_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1042
1043                 // Find the derivative.
1044                 {
1045                         ScopedTimer timer("Sobel", &level_timer);
1046                         sobel.exec(tex0_view, grad0_tex, level_width, level_height);
1047                 }
1048
1049                 // Motion search to find the initial flow. We use the flow from the previous
1050                 // level (sampled bilinearly; no fancy tricks) as a guide, then search from there.
1051
1052                 // Create an output flow texture.
1053                 GLuint flow_out_tex = pool.get_texture(GL_RGB16F, width_patches, height_patches);
1054
1055                 // And draw.
1056                 {
1057                         ScopedTimer timer("Motion search", &level_timer);
1058                         motion_search.exec(tex0_view, tex1_view, grad0_tex, prev_level_flow_tex, flow_out_tex, level_width, level_height, prev_level_width, prev_level_height, width_patches, height_patches);
1059                 }
1060                 pool.release_texture(grad0_tex);
1061
1062                 // Densification.
1063
1064                 // Set up an output texture (cleared in Densify).
1065                 GLuint dense_flow_tex = pool.get_texture(GL_RGB16F, level_width, level_height);
1066
1067                 // And draw.
1068                 {
1069                         ScopedTimer timer("Densification", &level_timer);
1070                         densify.exec(tex0_view, tex1_view, flow_out_tex, dense_flow_tex, level_width, level_height, width_patches, height_patches);
1071                 }
1072                 pool.release_texture(flow_out_tex);
1073
1074                 // Everything below here in the loop belongs to variational refinement.
1075                 ScopedTimer varref_timer("Variational refinement", &level_timer);
1076
1077                 // Prewarping; create I and I_t, and a normalized base flow (so we don't
1078                 // have to normalize it over and over again, and also save some bandwidth).
1079                 //
1080                 // During the entire rest of the variational refinement, flow will be measured
1081                 // in pixels, not 0..1 normalized OpenGL texture coordinates.
1082                 // This is because variational refinement depends so heavily on derivatives,
1083                 // which are measured in intensity levels per pixel.
1084                 GLuint I_tex = pool.get_texture(GL_R16F, level_width, level_height);
1085                 GLuint I_t_tex = pool.get_texture(GL_R16F, level_width, level_height);
1086                 GLuint base_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1087                 {
1088                         ScopedTimer timer("Prewarping", &varref_timer);
1089                         prewarp.exec(tex0_view, tex1_view, dense_flow_tex, I_tex, I_t_tex, base_flow_tex, level_width, level_height);
1090                 }
1091                 pool.release_texture(dense_flow_tex);
1092                 glDeleteTextures(1, &tex0_view);
1093                 glDeleteTextures(1, &tex1_view);
1094
1095                 // Calculate I_x and I_y. We're only calculating first derivatives;
1096                 // the others will be taken on-the-fly in order to sample from fewer
1097                 // textures overall, since sampling from the L1 cache is cheap.
1098                 // (TODO: Verify that this is indeed faster than making separate
1099                 // double-derivative textures.)
1100                 GLuint I_x_y_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1101                 GLuint beta_0_tex = pool.get_texture(GL_R16F, level_width, level_height);
1102                 {
1103                         ScopedTimer timer("First derivatives", &varref_timer);
1104                         derivatives.exec(I_tex, I_x_y_tex, beta_0_tex, level_width, level_height);
1105                 }
1106                 pool.release_texture(I_tex);
1107
1108                 // We need somewhere to store du and dv (the flow increment, relative
1109                 // to the non-refined base flow u0 and v0). It's initially garbage,
1110                 // but not read until we've written something sane to it.
1111                 GLuint du_dv_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1112
1113                 // And for diffusivity.
1114                 GLuint diffusivity_tex = pool.get_texture(GL_R16F, level_width, level_height);
1115
1116                 // And finally for the equation set. See SetupEquations for
1117                 // the storage format.
1118                 GLuint equation_tex = pool.get_texture(GL_RGBA32UI, level_width, level_height);
1119
1120                 for (int outer_idx = 0; outer_idx < level + 1; ++outer_idx) {
1121                         // Calculate the diffusivity term for each pixel.
1122                         {
1123                                 ScopedTimer timer("Compute diffusivity", &varref_timer);
1124                                 compute_diffusivity.exec(base_flow_tex, du_dv_tex, diffusivity_tex, level_width, level_height, outer_idx == 0);
1125                         }
1126
1127                         // Set up the 2x2 equation system for each pixel.
1128                         {
1129                                 ScopedTimer timer("Set up equations", &varref_timer);
1130                                 setup_equations.exec(I_x_y_tex, I_t_tex, du_dv_tex, base_flow_tex, beta_0_tex, diffusivity_tex, equation_tex, level_width, level_height, outer_idx == 0);
1131                         }
1132
1133                         // Run a few SOR (or quasi-SOR, since we're not really Jacobi) iterations.
1134                         // Note that these are to/from the same texture.
1135                         {
1136                                 ScopedTimer timer("SOR", &varref_timer);
1137                                 sor.exec(du_dv_tex, equation_tex, diffusivity_tex, level_width, level_height, 5, outer_idx == 0, &timer);
1138                         }
1139                 }
1140
1141                 pool.release_texture(I_t_tex);
1142                 pool.release_texture(I_x_y_tex);
1143                 pool.release_texture(beta_0_tex);
1144                 pool.release_texture(diffusivity_tex);
1145                 pool.release_texture(equation_tex);
1146
1147                 // Add the differential flow found by the variational refinement to the base flow,
1148                 // giving the final flow estimate for this level.
1149                 // The output is in diff_flow_tex; we don't need to make a new texture.
1150                 //
1151                 // Disabling this doesn't save any time (although we could easily make it so that
1152                 // it is more efficient), but it helps debug the motion search.
1153                 if (enable_variational_refinement) {
1154                         ScopedTimer timer("Add differential flow", &varref_timer);
1155                         add_base_flow.exec(base_flow_tex, du_dv_tex, level_width, level_height);
1156                 }
1157                 pool.release_texture(du_dv_tex);
1158
1159                 if (prev_level_flow_tex != initial_flow_tex) {
1160                         pool.release_texture(prev_level_flow_tex);
1161                 }
1162                 prev_level_flow_tex = base_flow_tex;
1163                 prev_level_width = level_width;
1164                 prev_level_height = level_height;
1165         }
1166         total_timer.end();
1167
1168         timers.print();
1169
1170         // Scale up the flow to the final size (if needed).
1171         if (finest_level == 0 || resize_strategy == DO_NOT_RESIZE_FLOW) {
1172                 return prev_level_flow_tex;
1173         } else {
1174                 GLuint final_tex = pool.get_texture(GL_RG16F, width, height);
1175                 resize_flow.exec(prev_level_flow_tex, final_tex, prev_level_width, prev_level_height, width, height);
1176                 pool.release_texture(prev_level_flow_tex);
1177                 return final_tex;
1178         }
1179 }
1180
1181 // Forward-warp the flow half-way (or rather, by alpha). A non-zero “splatting”
1182 // radius fills most of the holes.
1183 class Splat {
1184 public:
1185         Splat();
1186
1187         // alpha is the time of the interpolated frame (0..1).
1188         void exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha);
1189
1190 private:
1191         PersistentFBOSetWithDepth<1> fbos;
1192
1193         GLuint splat_vs_obj;
1194         GLuint splat_fs_obj;
1195         GLuint splat_program;
1196
1197         GLuint uniform_invert_flow, uniform_splat_size, uniform_alpha;
1198         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1199         GLuint uniform_inv_flow_size;
1200 };
1201
1202 Splat::Splat()
1203 {
1204         splat_vs_obj = compile_shader(read_file("splat.vert"), GL_VERTEX_SHADER);
1205         splat_fs_obj = compile_shader(read_file("splat.frag"), GL_FRAGMENT_SHADER);
1206         splat_program = link_program(splat_vs_obj, splat_fs_obj);
1207
1208         uniform_invert_flow = glGetUniformLocation(splat_program, "invert_flow");
1209         uniform_splat_size = glGetUniformLocation(splat_program, "splat_size");
1210         uniform_alpha = glGetUniformLocation(splat_program, "alpha");
1211         uniform_image0_tex = glGetUniformLocation(splat_program, "image0_tex");
1212         uniform_image1_tex = glGetUniformLocation(splat_program, "image1_tex");
1213         uniform_flow_tex = glGetUniformLocation(splat_program, "flow_tex");
1214         uniform_inv_flow_size = glGetUniformLocation(splat_program, "inv_flow_size");
1215 }
1216
1217 void Splat::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha)
1218 {
1219         glUseProgram(splat_program);
1220
1221         bind_sampler(splat_program, uniform_image0_tex, 0, tex0, linear_sampler);
1222         bind_sampler(splat_program, uniform_image1_tex, 1, tex1, linear_sampler);
1223
1224         // FIXME: This is set to 1.0 right now so not to trigger Haswell's “PMA stall”.
1225         // Move to 2.0 later, or even 4.0.
1226         // (Since we have hole filling, it's not critical, but larger values seem to do
1227         // better than hole filling for large motion, blurs etc.)
1228         float splat_size = 1.0f;  // 4x4 splat means 16x overdraw, 2x2 splat means 4x overdraw.
1229         glProgramUniform2f(splat_program, uniform_splat_size, splat_size / width, splat_size / height);
1230         glProgramUniform1f(splat_program, uniform_alpha, alpha);
1231         glProgramUniform2f(splat_program, uniform_inv_flow_size, 1.0f / width, 1.0f / height);
1232
1233         glViewport(0, 0, width, height);
1234         glDisable(GL_BLEND);
1235         glEnable(GL_DEPTH_TEST);
1236         glDepthFunc(GL_LESS);  // We store the difference between I_0 and I_1, where less difference is good. (Default 1.0 is effectively +inf, which always loses.)
1237
1238         fbos.render_to(depth_tex, flow_tex);
1239
1240         // Evidently NVIDIA doesn't use fast clears for glClearTexImage, so clear now that
1241         // we've got it bound.
1242         glClearColor(1000.0f, 1000.0f, 0.0f, 1.0f);  // Invalid flow.
1243         glClearDepth(1.0f);  // Effectively infinity.
1244         glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
1245
1246         // Do forward splatting.
1247         bind_sampler(splat_program, uniform_flow_tex, 2, forward_flow_tex, nearest_sampler);
1248         glProgramUniform1i(splat_program, uniform_invert_flow, 0);
1249         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1250
1251         // Do backward splatting.
1252         bind_sampler(splat_program, uniform_flow_tex, 2, backward_flow_tex, nearest_sampler);
1253         glProgramUniform1i(splat_program, uniform_invert_flow, 1);
1254         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1255
1256         glDisable(GL_DEPTH_TEST);
1257 }
1258
1259 // Doing good and fast hole-filling on a GPU is nontrivial. We choose an option
1260 // that's fairly simple (given that most holes are really small) and also hopefully
1261 // cheap should the holes not be so small. Conceptually, we look for the first
1262 // non-hole to the left of us (ie., shoot a ray until we hit something), then
1263 // the first non-hole to the right of us, then up and down, and then average them
1264 // all together. It's going to create “stars” if the holes are big, but OK, that's
1265 // a tradeoff.
1266 //
1267 // Our implementation here is efficient assuming that the hierarchical Z-buffer is
1268 // on even for shaders that do discard (this typically kills early Z, but hopefully
1269 // not hierarchical Z); we set up Z so that only holes are written to, which means
1270 // that as soon as a hole is filled, the rasterizer should just skip it. Most of the
1271 // fullscreen quads should just be discarded outright, really.
1272 class HoleFill {
1273 public:
1274         HoleFill();
1275
1276         // Output will be in flow_tex, temp_tex[0, 1, 2], representing the filling
1277         // from the down, left, right and up, respectively. Use HoleBlend to merge
1278         // them into one.
1279         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1280
1281 private:
1282         PersistentFBOSetWithDepth<1> fbos;
1283
1284         GLuint fill_vs_obj;
1285         GLuint fill_fs_obj;
1286         GLuint fill_program;
1287
1288         GLuint uniform_tex;
1289         GLuint uniform_z, uniform_sample_offset;
1290 };
1291
1292 HoleFill::HoleFill()
1293 {
1294         fill_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);
1295         fill_fs_obj = compile_shader(read_file("hole_fill.frag"), GL_FRAGMENT_SHADER);
1296         fill_program = link_program(fill_vs_obj, fill_fs_obj);
1297
1298         uniform_tex = glGetUniformLocation(fill_program, "tex");
1299         uniform_z = glGetUniformLocation(fill_program, "z");
1300         uniform_sample_offset = glGetUniformLocation(fill_program, "sample_offset");
1301 }
1302
1303 void HoleFill::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1304 {
1305         glUseProgram(fill_program);
1306
1307         bind_sampler(fill_program, uniform_tex, 0, flow_tex, nearest_sampler);
1308
1309         glProgramUniform1f(fill_program, uniform_z, 1.0f - 1.0f / 1024.0f);
1310
1311         glViewport(0, 0, width, height);
1312         glDisable(GL_BLEND);
1313         glEnable(GL_DEPTH_TEST);
1314         glDepthFunc(GL_LESS);  // Only update the values > 0.999f (ie., only invalid pixels).
1315
1316         fbos.render_to(depth_tex, flow_tex);  // NOTE: Reading and writing to the same texture.
1317
1318         // Fill holes from the left, by shifting 1, 2, 4, 8, etc. pixels to the right.
1319         for (int offs = 1; offs < width; offs *= 2) {
1320                 glProgramUniform2f(fill_program, uniform_sample_offset, -offs / float(width), 0.0f);
1321                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1322                 glTextureBarrier();
1323         }
1324         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[0], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1325
1326         // Similar to the right; adjust Z a bit down, so that we re-fill the pixels that
1327         // were overwritten in the last algorithm.
1328         glProgramUniform1f(fill_program, uniform_z, 1.0f - 2.0f / 1024.0f);
1329         for (int offs = 1; offs < width; offs *= 2) {
1330                 glProgramUniform2f(fill_program, uniform_sample_offset, offs / float(width), 0.0f);
1331                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1332                 glTextureBarrier();
1333         }
1334         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[1], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1335
1336         // Up.
1337         glProgramUniform1f(fill_program, uniform_z, 1.0f - 3.0f / 1024.0f);
1338         for (int offs = 1; offs < height; offs *= 2) {
1339                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, -offs / float(height));
1340                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1341                 glTextureBarrier();
1342         }
1343         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[2], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1344
1345         // Down.
1346         glProgramUniform1f(fill_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1347         for (int offs = 1; offs < height; offs *= 2) {
1348                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, offs / float(height));
1349                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1350                 glTextureBarrier();
1351         }
1352
1353         glDisable(GL_DEPTH_TEST);
1354 }
1355
1356 // Blend the four directions from HoleFill into one pixel, so that single-pixel
1357 // holes become the average of their four neighbors.
1358 class HoleBlend {
1359 public:
1360         HoleBlend();
1361
1362         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1363
1364 private:
1365         PersistentFBOSetWithDepth<1> fbos;
1366
1367         GLuint blend_vs_obj;
1368         GLuint blend_fs_obj;
1369         GLuint blend_program;
1370
1371         GLuint uniform_left_tex, uniform_right_tex, uniform_up_tex, uniform_down_tex;
1372         GLuint uniform_z, uniform_sample_offset;
1373 };
1374
1375 HoleBlend::HoleBlend()
1376 {
1377         blend_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);  // Reuse the vertex shader from the fill.
1378         blend_fs_obj = compile_shader(read_file("hole_blend.frag"), GL_FRAGMENT_SHADER);
1379         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1380
1381         uniform_left_tex = glGetUniformLocation(blend_program, "left_tex");
1382         uniform_right_tex = glGetUniformLocation(blend_program, "right_tex");
1383         uniform_up_tex = glGetUniformLocation(blend_program, "up_tex");
1384         uniform_down_tex = glGetUniformLocation(blend_program, "down_tex");
1385         uniform_z = glGetUniformLocation(blend_program, "z");
1386         uniform_sample_offset = glGetUniformLocation(blend_program, "sample_offset");
1387 }
1388
1389 void HoleBlend::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1390 {
1391         glUseProgram(blend_program);
1392
1393         bind_sampler(blend_program, uniform_left_tex, 0, temp_tex[0], nearest_sampler);
1394         bind_sampler(blend_program, uniform_right_tex, 1, temp_tex[1], nearest_sampler);
1395         bind_sampler(blend_program, uniform_up_tex, 2, temp_tex[2], nearest_sampler);
1396         bind_sampler(blend_program, uniform_down_tex, 3, flow_tex, nearest_sampler);
1397
1398         glProgramUniform1f(blend_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1399         glProgramUniform2f(blend_program, uniform_sample_offset, 0.0f, 0.0f);
1400
1401         glViewport(0, 0, width, height);
1402         glDisable(GL_BLEND);
1403         glEnable(GL_DEPTH_TEST);
1404         glDepthFunc(GL_LEQUAL);  // Skip over all of the pixels that were never holes to begin with.
1405
1406         fbos.render_to(depth_tex, flow_tex);  // NOTE: Reading and writing to the same texture.
1407
1408         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1409
1410         glDisable(GL_DEPTH_TEST);
1411 }
1412
1413 class Blend {
1414 public:
1415         Blend();
1416         void exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int width, int height, float alpha);
1417
1418 private:
1419         PersistentFBOSet<1> fbos;
1420         GLuint blend_vs_obj;
1421         GLuint blend_fs_obj;
1422         GLuint blend_program;
1423
1424         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1425         GLuint uniform_alpha, uniform_flow_consistency_tolerance;
1426 };
1427
1428 Blend::Blend()
1429 {
1430         blend_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
1431         blend_fs_obj = compile_shader(read_file("blend.frag"), GL_FRAGMENT_SHADER);
1432         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1433
1434         uniform_image0_tex = glGetUniformLocation(blend_program, "image0_tex");
1435         uniform_image1_tex = glGetUniformLocation(blend_program, "image1_tex");
1436         uniform_flow_tex = glGetUniformLocation(blend_program, "flow_tex");
1437         uniform_alpha = glGetUniformLocation(blend_program, "alpha");
1438         uniform_flow_consistency_tolerance = glGetUniformLocation(blend_program, "flow_consistency_tolerance");
1439 }
1440
1441 void Blend::exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int level_width, int level_height, float alpha)
1442 {
1443         glUseProgram(blend_program);
1444         bind_sampler(blend_program, uniform_image0_tex, 0, tex0, linear_sampler);
1445         bind_sampler(blend_program, uniform_image1_tex, 1, tex1, linear_sampler);
1446         bind_sampler(blend_program, uniform_flow_tex, 2, flow_tex, linear_sampler);  // May be upsampled.
1447         glProgramUniform1f(blend_program, uniform_alpha, alpha);
1448
1449         glViewport(0, 0, level_width, level_height);
1450         fbos.render_to(output_tex);
1451         glUseProgram(blend_program);
1452         glDisable(GL_BLEND);  // A bit ironic, perhaps.
1453         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1454 }
1455
1456 class Interpolate {
1457 public:
1458         Interpolate(int width, int height, int flow_level);
1459
1460         // Returns a texture that must be released with release_texture()
1461         // after use. tex0 and tex1 must be RGBA8 textures with mipmaps
1462         // (unless flow_level == 0).
1463         GLuint exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha);
1464
1465         void release_texture(GLuint tex) {
1466                 pool.release_texture(tex);
1467         }
1468
1469 private:
1470         int width, height, flow_level;
1471         GLuint vertex_vbo, vao;
1472         TexturePool pool;
1473
1474         Splat splat;
1475         HoleFill hole_fill;
1476         HoleBlend hole_blend;
1477         Blend blend;
1478 };
1479
1480 Interpolate::Interpolate(int width, int height, int flow_level)
1481         : width(width), height(height), flow_level(flow_level) {
1482         // Set up the vertex data that will be shared between all passes.
1483         float vertices[] = {
1484                 0.0f, 1.0f,
1485                 0.0f, 0.0f,
1486                 1.0f, 1.0f,
1487                 1.0f, 0.0f,
1488         };
1489         glCreateBuffers(1, &vertex_vbo);
1490         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
1491
1492         glCreateVertexArrays(1, &vao);
1493         glBindVertexArray(vao);
1494         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1495
1496         GLint position_attrib = 0;  // Hard-coded in every vertex shader.
1497         glEnableVertexArrayAttrib(vao, position_attrib);
1498         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1499 }
1500
1501 GLuint Interpolate::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha)
1502 {
1503         GPUTimers timers;
1504
1505         ScopedTimer total_timer("Total", &timers);
1506
1507         glBindVertexArray(vao);
1508
1509         // Pick out the right level to test splatting results on.
1510         GLuint tex0_view, tex1_view;
1511         glGenTextures(1, &tex0_view);
1512         glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_RGBA8, flow_level, 1, 0, 1);
1513         glGenTextures(1, &tex1_view);
1514         glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_RGBA8, flow_level, 1, 0, 1);
1515
1516         int flow_width = width >> flow_level;
1517         int flow_height = height >> flow_level;
1518
1519         GLuint flow_tex = pool.get_texture(GL_RG16F, flow_width, flow_height);
1520         GLuint depth_tex = pool.get_texture(GL_DEPTH_COMPONENT32F, flow_width, flow_height);  // Used for ranking flows.
1521
1522         {
1523                 ScopedTimer timer("Splat", &total_timer);
1524                 splat.exec(tex0_view, tex1_view, forward_flow_tex, backward_flow_tex, flow_tex, depth_tex, flow_width, flow_height, alpha);
1525         }
1526         glDeleteTextures(1, &tex0_view);
1527         glDeleteTextures(1, &tex1_view);
1528
1529         GLuint temp_tex[3];
1530         temp_tex[0] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1531         temp_tex[1] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1532         temp_tex[2] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1533
1534         {
1535                 ScopedTimer timer("Fill holes", &total_timer);
1536                 hole_fill.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1537                 hole_blend.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1538         }
1539
1540         pool.release_texture(temp_tex[0]);
1541         pool.release_texture(temp_tex[1]);
1542         pool.release_texture(temp_tex[2]);
1543         pool.release_texture(depth_tex);
1544
1545         GLuint output_tex = pool.get_texture(GL_RGBA8, width, height);
1546         {
1547                 ScopedTimer timer("Blend", &total_timer);
1548                 blend.exec(tex0, tex1, flow_tex, output_tex, width, height, alpha);
1549         }
1550         total_timer.end();
1551         timers.print();
1552
1553         return output_tex;
1554 }
1555
1556 GLuint TexturePool::get_texture(GLenum format, GLuint width, GLuint height)
1557 {
1558         for (Texture &tex : textures) {
1559                 if (!tex.in_use && tex.format == format &&
1560                     tex.width == width && tex.height == height) {
1561                         tex.in_use = true;
1562                         return tex.tex_num;
1563                 }
1564         }
1565
1566         Texture tex;
1567         glCreateTextures(GL_TEXTURE_2D, 1, &tex.tex_num);
1568         glTextureStorage2D(tex.tex_num, 1, format, width, height);
1569         tex.format = format;
1570         tex.width = width;
1571         tex.height = height;
1572         tex.in_use = true;
1573         textures.push_back(tex);
1574         return tex.tex_num;
1575 }
1576
1577 void TexturePool::release_texture(GLuint tex_num)
1578 {
1579         for (Texture &tex : textures) {
1580                 if (tex.tex_num == tex_num) {
1581                         assert(tex.in_use);
1582                         tex.in_use = false;
1583                         return;
1584                 }
1585         }
1586         assert(false);
1587 }
1588
1589 // OpenGL uses a bottom-left coordinate system, .flo files use a top-left coordinate system.
1590 void flip_coordinate_system(float *dense_flow, unsigned width, unsigned height)
1591 {
1592         for (unsigned i = 0; i < width * height; ++i) {
1593                 dense_flow[i * 2 + 1] = -dense_flow[i * 2 + 1];
1594         }
1595 }
1596
1597 // Not relevant for RGB.
1598 void flip_coordinate_system(uint8_t *dense_flow, unsigned width, unsigned height)
1599 {
1600 }
1601
1602 void write_flow(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1603 {
1604         FILE *flowfp = fopen(filename, "wb");
1605         fprintf(flowfp, "FEIH");
1606         fwrite(&width, 4, 1, flowfp);
1607         fwrite(&height, 4, 1, flowfp);
1608         for (unsigned y = 0; y < height; ++y) {
1609                 int yy = height - y - 1;
1610                 fwrite(&dense_flow[yy * width * 2], width * 2 * sizeof(float), 1, flowfp);
1611         }
1612         fclose(flowfp);
1613 }
1614
1615 // Not relevant for RGB.
1616 void write_flow(const char *filename, const uint8_t *dense_flow, unsigned width, unsigned height)
1617 {
1618         assert(false);
1619 }
1620
1621 void write_ppm(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1622 {
1623         FILE *fp = fopen(filename, "wb");
1624         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1625         for (unsigned y = 0; y < unsigned(height); ++y) {
1626                 int yy = height - y - 1;
1627                 for (unsigned x = 0; x < unsigned(width); ++x) {
1628                         float du = dense_flow[(yy * width + x) * 2 + 0];
1629                         float dv = dense_flow[(yy * width + x) * 2 + 1];
1630
1631                         uint8_t r, g, b;
1632                         flow2rgb(du, dv, &r, &g, &b);
1633                         putc(r, fp);
1634                         putc(g, fp);
1635                         putc(b, fp);
1636                 }
1637         }
1638         fclose(fp);
1639 }
1640
1641 void write_ppm(const char *filename, const uint8_t *rgba, unsigned width, unsigned height)
1642 {
1643         unique_ptr<uint8_t[]> rgb_line(new uint8_t[width * 3 + 1]);
1644
1645         FILE *fp = fopen(filename, "wb");
1646         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1647         for (unsigned y = 0; y < height; ++y) {
1648                 unsigned y2 = height - 1 - y;
1649                 for (size_t x = 0; x < width; ++x) {
1650                         memcpy(&rgb_line[x * 3], &rgba[(y2 * width + x) * 4], 4);
1651                 }
1652                 fwrite(rgb_line.get(), width * 3, 1, fp);
1653         }
1654         fclose(fp);
1655 }
1656
1657 struct FlowType {
1658         using type = float;
1659         static constexpr GLenum gl_format = GL_RG;
1660         static constexpr GLenum gl_type = GL_FLOAT;
1661         static constexpr int num_channels = 2;
1662 };
1663
1664 struct RGBAType {
1665         using type = uint8_t;
1666         static constexpr GLenum gl_format = GL_RGBA;
1667         static constexpr GLenum gl_type = GL_UNSIGNED_BYTE;
1668         static constexpr int num_channels = 4;
1669 };
1670
1671 template <class Type>
1672 void finish_one_read(GLuint width, GLuint height)
1673 {
1674         using T = typename Type::type;
1675         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1676
1677         assert(!reads_in_progress.empty());
1678         ReadInProgress read = reads_in_progress.front();
1679         reads_in_progress.pop_front();
1680
1681         unique_ptr<T[]> flow(new typename Type::type[width * height * Type::num_channels]);
1682         void *buf = glMapNamedBufferRange(read.pbo, 0, width * height * bytes_per_pixel, GL_MAP_READ_BIT);  // Blocks if the read isn't done yet.
1683         memcpy(flow.get(), buf, width * height * bytes_per_pixel);  // TODO: Unneeded for RGBType, since flip_coordinate_system() does nothing.:
1684         glUnmapNamedBuffer(read.pbo);
1685         spare_pbos.push(read.pbo);
1686
1687         flip_coordinate_system(flow.get(), width, height);
1688         if (!read.flow_filename.empty()) {
1689                 write_flow(read.flow_filename.c_str(), flow.get(), width, height);
1690                 fprintf(stderr, "%s %s -> %s\n", read.filename0.c_str(), read.filename1.c_str(), read.flow_filename.c_str());
1691         }
1692         if (!read.ppm_filename.empty()) {
1693                 write_ppm(read.ppm_filename.c_str(), flow.get(), width, height);
1694         }
1695 }
1696
1697 template <class Type>
1698 void schedule_read(GLuint tex, GLuint width, GLuint height, const char *filename0, const char *filename1, const char *flow_filename, const char *ppm_filename)
1699 {
1700         using T = typename Type::type;
1701         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1702
1703         if (spare_pbos.empty()) {
1704                 finish_one_read<Type>(width, height);
1705         }
1706         assert(!spare_pbos.empty());
1707         reads_in_progress.emplace_back(ReadInProgress{ spare_pbos.top(), filename0, filename1, flow_filename, ppm_filename });
1708         glBindBuffer(GL_PIXEL_PACK_BUFFER, spare_pbos.top());
1709         spare_pbos.pop();
1710         glGetTextureImage(tex, 0, Type::gl_format, Type::gl_type, width * height * bytes_per_pixel, nullptr);
1711         glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
1712 }
1713
1714 void compute_flow_only(int argc, char **argv, int optind)
1715 {
1716         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1717         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1718         const char *flow_filename = argc >= (optind + 3) ? argv[optind + 2] : "flow.flo";
1719
1720         // Load pictures.
1721         unsigned width1, height1, width2, height2;
1722         GLuint tex0 = load_texture(filename0, &width1, &height1, WITHOUT_MIPMAPS);
1723         GLuint tex1 = load_texture(filename1, &width2, &height2, WITHOUT_MIPMAPS);
1724
1725         if (width1 != width2 || height1 != height2) {
1726                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1727                         width1, height1, width2, height2);
1728                 exit(1);
1729         }
1730
1731         // Set up some PBOs to do asynchronous readback.
1732         GLuint pbos[5];
1733         glCreateBuffers(5, pbos);
1734         for (int i = 0; i < 5; ++i) {
1735                 glNamedBufferData(pbos[i], width1 * height1 * 2 * sizeof(float), nullptr, GL_STREAM_READ);
1736                 spare_pbos.push(pbos[i]);
1737         }
1738
1739         int levels = find_num_levels(width1, height1);
1740         GLuint tex0_gray, tex1_gray;
1741         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1742         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1743         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1744         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1745
1746         GrayscaleConversion gray;
1747         gray.exec(tex0, tex0_gray, width1, height1);
1748         glDeleteTextures(1, &tex0);
1749         glGenerateTextureMipmap(tex0_gray);
1750
1751         gray.exec(tex1, tex1_gray, width1, height1);
1752         glDeleteTextures(1, &tex1);
1753         glGenerateTextureMipmap(tex1_gray);
1754
1755         DISComputeFlow compute_flow(width1, height1);
1756         GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1757
1758         schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "flow.ppm");
1759         compute_flow.release_texture(final_tex);
1760
1761         // See if there are more flows on the command line (ie., more than three arguments),
1762         // and if so, process them.
1763         int num_flows = (argc - optind) / 3;
1764         for (int i = 1; i < num_flows; ++i) {
1765                 const char *filename0 = argv[optind + i * 3 + 0];
1766                 const char *filename1 = argv[optind + i * 3 + 1];
1767                 const char *flow_filename = argv[optind + i * 3 + 2];
1768                 GLuint width, height;
1769                 GLuint tex0 = load_texture(filename0, &width, &height, WITHOUT_MIPMAPS);
1770                 if (width != width1 || height != height1) {
1771                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1772                                 filename0, width, height, width1, height1);
1773                         exit(1);
1774                 }
1775                 gray.exec(tex0, tex0_gray, width, height);
1776                 glGenerateTextureMipmap(tex0_gray);
1777                 glDeleteTextures(1, &tex0);
1778
1779                 GLuint tex1 = load_texture(filename1, &width, &height, WITHOUT_MIPMAPS);
1780                 if (width != width1 || height != height1) {
1781                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1782                                 filename1, width, height, width1, height1);
1783                         exit(1);
1784                 }
1785                 gray.exec(tex1, tex1_gray, width, height);
1786                 glGenerateTextureMipmap(tex1_gray);
1787                 glDeleteTextures(1, &tex1);
1788
1789                 GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1790
1791                 schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "");
1792                 compute_flow.release_texture(final_tex);
1793         }
1794         glDeleteTextures(1, &tex0_gray);
1795         glDeleteTextures(1, &tex1_gray);
1796
1797         while (!reads_in_progress.empty()) {
1798                 finish_one_read<FlowType>(width1, height1);
1799         }
1800 }
1801
1802 // Interpolate images based on
1803 //
1804 //   Herbst, Seitz, Baker: “Occlusion Reasoning for Temporal Interpolation
1805 //   Using Optical Flow”
1806 //
1807 // or at least a reasonable subset thereof. Unfinished.
1808 void interpolate_image(int argc, char **argv, int optind)
1809 {
1810         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1811         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1812         //const char *out_filename = argc >= (optind + 3) ? argv[optind + 2] : "interpolated.png";
1813
1814         // Load pictures.
1815         unsigned width1, height1, width2, height2;
1816         GLuint tex0 = load_texture(filename0, &width1, &height1, WITH_MIPMAPS);
1817         GLuint tex1 = load_texture(filename1, &width2, &height2, WITH_MIPMAPS);
1818
1819         if (width1 != width2 || height1 != height2) {
1820                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1821                         width1, height1, width2, height2);
1822                 exit(1);
1823         }
1824
1825         // Set up some PBOs to do asynchronous readback.
1826         GLuint pbos[5];
1827         glCreateBuffers(5, pbos);
1828         for (int i = 0; i < 5; ++i) {
1829                 glNamedBufferData(pbos[i], width1 * height1 * 4 * sizeof(uint8_t), nullptr, GL_STREAM_READ);
1830                 spare_pbos.push(pbos[i]);
1831         }
1832
1833         DISComputeFlow compute_flow(width1, height1);
1834         GrayscaleConversion gray;
1835         Interpolate interpolate(width1, height1, finest_level);
1836
1837         int levels = find_num_levels(width1, height1);
1838         GLuint tex0_gray, tex1_gray;
1839         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1840         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1841         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1842         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1843
1844         gray.exec(tex0, tex0_gray, width1, height1);
1845         glGenerateTextureMipmap(tex0_gray);
1846
1847         gray.exec(tex1, tex1_gray, width1, height1);
1848         glGenerateTextureMipmap(tex1_gray);
1849
1850         GLuint forward_flow_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1851         GLuint backward_flow_tex = compute_flow.exec(tex1_gray, tex0_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1852
1853         for (int frameno = 1; frameno < 60; ++frameno) {
1854                 char ppm_filename[256];
1855                 snprintf(ppm_filename, sizeof(ppm_filename), "interp%04d.ppm", frameno);
1856
1857                 float alpha = frameno / 60.0f;
1858                 GLuint interpolated_tex = interpolate.exec(tex0, tex1, forward_flow_tex, backward_flow_tex, width1, height1, alpha);
1859
1860                 schedule_read<RGBAType>(interpolated_tex, width1, height1, filename0, filename1, "", ppm_filename);
1861                 interpolate.release_texture(interpolated_tex);
1862         }
1863
1864         while (!reads_in_progress.empty()) {
1865                 finish_one_read<RGBAType>(width1, height1);
1866         }
1867 }
1868
1869 int main(int argc, char **argv)
1870 {
1871         static const option long_options[] = {
1872                 { "smoothness-relative-weight", required_argument, 0, 's' },  // alpha.
1873                 { "intensity-relative-weight", required_argument, 0, 'i' },  // delta.
1874                 { "gradient-relative-weight", required_argument, 0, 'g' },  // gamma.
1875                 { "disable-timing", no_argument, 0, 1000 },
1876                 { "detailed-timing", no_argument, 0, 1003 },
1877                 { "ignore-variational-refinement", no_argument, 0, 1001 },  // Still calculates it, just doesn't apply it.
1878                 { "interpolate", no_argument, 0, 1002 }
1879         };
1880
1881         for ( ;; ) {
1882                 int option_index = 0;
1883                 int c = getopt_long(argc, argv, "s:i:g:", long_options, &option_index);
1884
1885                 if (c == -1) {
1886                         break;
1887                 }
1888                 switch (c) {
1889                 case 's':
1890                         vr_alpha = atof(optarg);
1891                         break;
1892                 case 'i':
1893                         vr_delta = atof(optarg);
1894                         break;
1895                 case 'g':
1896                         vr_gamma = atof(optarg);
1897                         break;
1898                 case 1000:
1899                         enable_timing = false;
1900                         break;
1901                 case 1001:
1902                         enable_variational_refinement = false;
1903                         break;
1904                 case 1002:
1905                         enable_interpolation = true;
1906                         break;
1907                 case 1003:
1908                         detailed_timing = true;
1909                         break;
1910                 default:
1911                         fprintf(stderr, "Unknown option '%s'\n", argv[option_index]);
1912                         exit(1);
1913                 };
1914         }
1915
1916         if (SDL_Init(SDL_INIT_EVERYTHING) == -1) {
1917                 fprintf(stderr, "SDL_Init failed: %s\n", SDL_GetError());
1918                 exit(1);
1919         }
1920         SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);
1921         SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 0);
1922         SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 0);
1923         SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
1924
1925         SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
1926         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4);
1927         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 5);
1928         // SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_DEBUG_FLAG);
1929         window = SDL_CreateWindow("OpenGL window",
1930                 SDL_WINDOWPOS_UNDEFINED,
1931                 SDL_WINDOWPOS_UNDEFINED,
1932                 64, 64,
1933                 SDL_WINDOW_OPENGL | SDL_WINDOW_HIDDEN);
1934         SDL_GLContext context = SDL_GL_CreateContext(window);
1935         assert(context != nullptr);
1936
1937         glDisable(GL_DITHER);
1938
1939         // FIXME: Should be part of DISComputeFlow (but needs to be initialized
1940         // before all the render passes).
1941         float vertices[] = {
1942                 0.0f, 1.0f,
1943                 0.0f, 0.0f,
1944                 1.0f, 1.0f,
1945                 1.0f, 0.0f,
1946         };
1947         glCreateBuffers(1, &vertex_vbo);
1948         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
1949         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1950
1951         if (enable_interpolation) {
1952                 interpolate_image(argc, argv, optind);
1953         } else {
1954                 compute_flow_only(argc, argv, optind);
1955         }
1956 }