]> git.sesse.net Git - nageru/blob - resampling_queue.cpp
Let settings follow buses when editing the mapping.
[nageru] / resampling_queue.cpp
1 // Parts of the code is adapted from Adriaensen's project Zita-ajbridge
2 // (as of November 2015), although it has been heavily reworked for this use
3 // case. Original copyright follows:
4 //
5 //  Copyright (C) 2012-2015 Fons Adriaensen <fons@linuxaudio.org>
6 //    
7 //  This program is free software; you can redistribute it and/or modify
8 //  it under the terms of the GNU General Public License as published by
9 //  the Free Software Foundation; either version 3 of the License, or
10 //  (at your option) any later version.
11 //
12 //  This program is distributed in the hope that it will be useful,
13 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
14 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 //  GNU General Public License for more details.
16 //
17 //  You should have received a copy of the GNU General Public License
18 //  along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
20 #include "resampling_queue.h"
21
22 #include <assert.h>
23 #include <math.h>
24 #include <stddef.h>
25 #include <stdio.h>
26 #include <string.h>
27 #include <zita-resampler/vresampler.h>
28
29 ResamplingQueue::ResamplingQueue(unsigned card_num, unsigned freq_in, unsigned freq_out, unsigned num_channels)
30         : card_num(card_num), freq_in(freq_in), freq_out(freq_out), num_channels(num_channels),
31           ratio(double(freq_out) / double(freq_in))
32 {
33         vresampler.setup(ratio, num_channels, /*hlen=*/32);
34
35         // Prime the resampler so there's no more delay.
36         vresampler.inp_count = vresampler.inpsize() / 2 - 1;
37         vresampler.out_count = 1048576;
38         vresampler.process ();
39 }
40
41 void ResamplingQueue::add_input_samples(double pts, const float *samples, ssize_t num_samples)
42 {
43         if (num_samples == 0) {
44                 return;
45         }
46         if (first_input) {
47                 // Synthesize a fake length.
48                 last_input_len = double(num_samples) / freq_in;
49                 first_input = false;
50         } else {
51                 last_input_len = pts - last_input_pts;
52         }
53
54         last_input_pts = pts;
55
56         k_a0 = k_a1;
57         k_a1 += num_samples;
58
59         buffer.insert(buffer.end(), samples, samples + num_samples * num_channels);
60 }
61
62 bool ResamplingQueue::get_output_samples(double pts, float *samples, ssize_t num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
63 {
64         assert(num_samples > 0);
65         if (first_input) {
66                 // No data yet, just return zeros.
67                 memset(samples, 0, num_samples * num_channels * sizeof(float));
68                 return true;
69         }
70
71         double rcorr = -1.0;
72         if (rate_adjustment_policy == ADJUST_RATE) {
73                 double last_output_len;
74                 if (first_output) {
75                         // Synthesize a fake length.
76                         last_output_len = double(num_samples) / freq_out;
77                 } else {
78                         last_output_len = pts - last_output_pts;
79                 }
80                 last_output_pts = pts;
81
82                 // Using the time point since just before the last call to add_input_samples() as a base,
83                 // estimate actual delay based on activity since then, measured in number of input samples:
84                 double actual_delay = 0.0;
85                 assert(last_input_len != 0);
86                 actual_delay += (k_a1 - k_a0) * last_output_len / last_input_len;    // Inserted samples since k_a0, rescaled for the different time periods.
87                 actual_delay += k_a0 - total_consumed_samples;                       // Samples inserted before k_a0 but not consumed yet.
88                 actual_delay += vresampler.inpdist();                                // Delay in the resampler itself.
89                 double err = actual_delay - expected_delay;
90                 if (first_output && err < 0.0) {
91                         // Before the very first block, insert artificial delay based on our initial estimate,
92                         // so that we don't need a long period to stabilize at the beginning.
93                         int delay_samples_to_add = lrintf(-err);
94                         for (ssize_t i = 0; i < delay_samples_to_add * num_channels; ++i) {
95                                 buffer.push_front(0.0f);
96                         }
97                         total_consumed_samples -= delay_samples_to_add;  // Equivalent to increasing k_a0 and k_a1.
98                         err += delay_samples_to_add;
99                 }
100                 first_output = false;
101
102                 // Compute loop filter coefficients for the two filters. We need to compute them
103                 // every time, since they depend on the number of samples the user asked for.
104                 //
105                 // The loop bandwidth is at 0.02 Hz; we trust the initial estimate quite well,
106                 // and our jitter is pretty large since none of the threads involved run at
107                 // real-time priority.
108                 double loop_bandwidth_hz = 0.02;
109
110                 // Set filters. The first filter much wider than the first one (20x as wide).
111                 double w = (2.0 * M_PI) * loop_bandwidth_hz * num_samples / freq_out;
112                 double w0 = 1.0 - exp(-20.0 * w);
113                 double w1 = w * 1.5 / num_samples / ratio;
114                 double w2 = w / 1.5;
115
116                 // Filter <err> through the loop filter to find the correction ratio.
117                 z1 += w0 * (w1 * err - z1);
118                 z2 += w0 * (z1 - z2);
119                 z3 += w2 * z2;
120                 rcorr = 1.0 - z2 - z3;
121                 if (rcorr > 1.05) rcorr = 1.05;
122                 if (rcorr < 0.95) rcorr = 0.95;
123                 assert(!isnan(rcorr));
124                 vresampler.set_rratio(rcorr);
125         } else {
126                 assert(rate_adjustment_policy == DO_NOT_ADJUST_RATE);
127         };
128
129         // Finally actually resample, consuming exactly <num_samples> output samples.
130         vresampler.out_data = samples;
131         vresampler.out_count = num_samples;
132         while (vresampler.out_count > 0) {
133                 if (buffer.empty()) {
134                         // This should never happen unless delay is set way too low,
135                         // or we're dropping a lot of data.
136                         fprintf(stderr, "Card %u: PANIC: Out of input samples to resample, still need %d output samples! (correction factor is %f)\n",
137                                 card_num, int(vresampler.out_count), rcorr);
138                         memset(vresampler.out_data, 0, vresampler.out_count * num_channels * sizeof(float));
139                         return false;
140                 }
141
142                 float inbuf[1024];
143                 size_t num_input_samples = sizeof(inbuf) / (sizeof(float) * num_channels);
144                 if (num_input_samples * num_channels > buffer.size()) {
145                         num_input_samples = buffer.size() / num_channels;
146                 }
147                 copy(buffer.begin(), buffer.begin() + num_input_samples * num_channels, inbuf);
148
149                 vresampler.inp_count = num_input_samples;
150                 vresampler.inp_data = inbuf;
151
152                 int err = vresampler.process();
153                 assert(err == 0);
154
155                 size_t consumed_samples = num_input_samples - vresampler.inp_count;
156                 total_consumed_samples += consumed_samples;
157                 buffer.erase(buffer.begin(), buffer.begin() + consumed_samples * num_channels);
158         }
159         return true;
160 }