Retire can_return_tt() and rewirte TT-hit code
[stockfish] / src / search.cpp
index b86b955942624d23d9f892c9ce8b92a5dd021cc8..a3d8781889a690e15e0b91c4044c0243245f90d1 100644 (file)
@@ -42,12 +42,11 @@ namespace Search {
   LimitsType Limits;
   std::vector<RootMove> RootMoves;
   Position RootPosition;
-  Time SearchTime;
+  Time::point SearchTime;
+  StateStackPtr SetupStates;
 }
 
 using std::string;
-using std::cout;
-using std::endl;
 using Eval::evaluate;
 using namespace Search;
 
@@ -56,6 +55,9 @@ namespace {
   // Set to true to force running with one thread. Used for debugging
   const bool FakeSplit = false;
 
+  // This is the minimum interval in msec between two check_time() calls
+  const int TimerResolution = 5;
+
   // Different node types, used as template parameter
   enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV };
 
@@ -63,28 +65,9 @@ namespace {
   const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 };
   inline bool piece_is_slider(Piece p) { return Slidings[p]; }
 
-  // Maximum depth for razoring
-  const Depth RazorDepth = 4 * ONE_PLY;
-
   // Dynamic razoring margin based on depth
   inline Value razor_margin(Depth d) { return Value(512 + 16 * int(d)); }
 
-  // Maximum depth for use of dynamic threat detection when null move fails low
-  const Depth ThreatDepth = 5 * ONE_PLY;
-
-  // Minimum depth for use of internal iterative deepening
-  const Depth IIDDepth[] = { 8 * ONE_PLY, 5 * ONE_PLY };
-
-  // At Non-PV nodes we do an internal iterative deepening search
-  // when the static evaluation is bigger then beta - IIDMargin.
-  const Value IIDMargin = Value(256);
-
-  // Minimum depth for use of singular extension
-  const Depth SingularExtensionDepth[] = { 8 * ONE_PLY, 6 * ONE_PLY };
-
-  // Futility margin for quiescence search
-  const Value FutilityMarginQS = Value(128);
-
   // Futility lookup tables (initialized at startup) and their access functions
   Value FutilityMargins[16][64]; // [depth][moveNumber]
   int FutilityMoveCounts[32];    // [depth]
@@ -95,11 +78,6 @@ namespace {
                            : 2 * VALUE_INFINITE;
   }
 
-  inline int futility_move_count(Depth d) {
-
-    return d < 16 * ONE_PLY ? FutilityMoveCounts[d] : MAX_MOVES;
-  }
-
   // Reduction lookup tables (initialized at startup) and their access function
   int8_t Reductions[2][64][64]; // [pv][depth][moveNumber]
 
@@ -108,14 +86,6 @@ namespace {
     return (Depth) Reductions[PvNode][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)];
   }
 
-  // Easy move margin. An easy move candidate must be at least this much better
-  // than the second best move.
-  const Value EasyMoveMargin = Value(0x150);
-
-  // This is the minimum interval in msec between two check_time() calls
-  const int TimerResolution = 5;
-
-
   size_t MultiPV, UCIMultiPV, PVIdx;
   TimeManager TimeMgr;
   int BestMoveChanges;
@@ -123,7 +93,6 @@ namespace {
   bool SkillLevelEnabled, Chess960;
   History H;
 
-
   template <NodeType NT>
   Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
 
@@ -135,36 +104,11 @@ namespace {
   bool connected_moves(const Position& pos, Move m1, Move m2);
   Value value_to_tt(Value v, int ply);
   Value value_from_tt(Value v, int ply);
-  bool can_return_tt(const TTEntry* tte, Depth depth, Value ttValue, Value beta);
   bool connected_threat(const Position& pos, Move m, Move threat);
   Value refine_eval(const TTEntry* tte, Value ttValue, Value defaultEval);
   Move do_skill_level();
   string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
 
-  // is_dangerous() checks whether a move belongs to some classes of known
-  // 'dangerous' moves so that we avoid to prune it.
-  FORCE_INLINE bool is_dangerous(const Position& pos, Move m, bool captureOrPromotion) {
-
-    // Castle move?
-    if (type_of(m) == CASTLE)
-        return true;
-
-    // Passed pawn move?
-    if (   type_of(pos.piece_moved(m)) == PAWN
-        && pos.pawn_is_passed(pos.side_to_move(), to_sq(m)))
-        return true;
-
-    // Entering a pawn endgame?
-    if (    captureOrPromotion
-        &&  type_of(pos.piece_on(to_sq(m))) != PAWN
-        &&  type_of(m) == NORMAL
-        && (  pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
-            - PieceValue[Mg][pos.piece_on(to_sq(m))] == VALUE_ZERO))
-        return true;
-
-    return false;
-  }
-
 } // namespace
 
 
@@ -225,19 +169,22 @@ size_t Search::perft(Position& pos, Depth depth) {
 
 void Search::think() {
 
-  static Book book; // Defined static to initialize the PRNG only once
+  static PolyglotBook book; // Defined static to initialize the PRNG only once
 
   Position& pos = RootPosition;
   Chess960 = pos.is_chess960();
   Eval::RootColor = pos.side_to_move();
+  int scaledCF = Eval::ContemptFactor * MaterialTable::game_phase(pos) / PHASE_MIDGAME;
+  Eval::ValueDraw[ Eval::RootColor] = VALUE_DRAW - Value(scaledCF);
+  Eval::ValueDraw[~Eval::RootColor] = VALUE_DRAW + Value(scaledCF);
   TimeMgr.init(Limits, pos.startpos_ply_counter(), pos.side_to_move());
   TT.new_search();
   H.clear();
 
   if (RootMoves.empty())
   {
-      cout << "info depth 0 score "
-           << score_to_uci(pos.in_check() ? -VALUE_MATE : VALUE_DRAW) << endl;
+      sync_cout << "info depth 0 score "
+                << score_to_uci(pos.in_check() ? -VALUE_MATE : VALUE_DRAW) << sync_endl;
 
       RootMoves.push_back(MOVE_NONE);
       goto finalize;
@@ -271,7 +218,7 @@ void Search::think() {
           << " time: "        << Limits.time[pos.side_to_move()]
           << " increment: "   << Limits.inc[pos.side_to_move()]
           << " moves to go: " << Limits.movestogo
-          << endl;
+          << std::endl;
   }
 
   Threads.wake_up();
@@ -280,6 +227,8 @@ void Search::think() {
   // used to check for remaining available thinking time.
   if (Limits.use_time_management())
       Threads.set_timer(std::min(100, std::max(TimeMgr.available_time() / 16, TimerResolution)));
+  else if (Limits.nodes)
+      Threads.set_timer(2 * TimerResolution);
   else
       Threads.set_timer(100);
 
@@ -291,16 +240,16 @@ void Search::think() {
 
   if (Options["Use Search Log"])
   {
-      int e = SearchTime.elapsed();
+      Time::point elapsed = Time::now() - SearchTime + 1;
 
       Log log(Options["Search Log Filename"]);
       log << "Nodes: "          << pos.nodes_searched()
-          << "\nNodes/second: " << (e > 0 ? pos.nodes_searched() * 1000 / e : 0)
+          << "\nNodes/second: " << pos.nodes_searched() * 1000 / elapsed
           << "\nBest move: "    << move_to_san(pos, RootMoves[0].pv[0]);
 
       StateInfo st;
       pos.do_move(RootMoves[0].pv[0], st);
-      log << "\nPonder move: " << move_to_san(pos, RootMoves[0].pv[1]) << endl;
+      log << "\nPonder move: " << move_to_san(pos, RootMoves[0].pv[1]) << std::endl;
       pos.undo_move(RootMoves[0].pv[0]);
   }
 
@@ -313,8 +262,8 @@ finalize:
       pos.this_thread()->wait_for_stop_or_ponderhit();
 
   // Best move could be MOVE_NONE when searching on a stalemate position
-  cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], Chess960)
-       << " ponder "  << move_to_uci(RootMoves[0].pv[1], Chess960) << endl;
+  sync_cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], Chess960)
+            << " ponder "  << move_to_uci(RootMoves[0].pv[1], Chess960) << sync_endl;
 }
 
 
@@ -366,7 +315,8 @@ namespace {
 
             // Start with a small aspiration window and, in case of fail high/low,
             // research with bigger window until not failing high/low anymore.
-            do {
+            while (true)
+            {
                 // Search starts from ss+1 to allow referencing (ss-1). This is
                 // needed by update gains and ss copy when splitting at Root.
                 bestValue = search<Root>(pos, ss+1, alpha, beta, depth * ONE_PLY);
@@ -399,8 +349,8 @@ namespace {
 
                 // Send full PV info to GUI if we are going to leave the loop or
                 // if we have a fail high/low and we are deep in the search.
-                if ((bestValue > alpha && bestValue < beta) || SearchTime.elapsed() > 2000)
-                    cout << uci_pv(pos, depth, alpha, beta) << endl;
+                if ((bestValue > alpha && bestValue < beta) || Time::now() - SearchTime > 2000)
+                    sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
 
                 // In case of failing high/low increase aspiration window and
                 // research, otherwise exit the fail high/low loop.
@@ -420,9 +370,15 @@ namespace {
                 else
                     break;
 
-                assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
+                // Search with full window in case we have a win/mate score
+                if (abs(bestValue) >= VALUE_KNOWN_WIN)
+                {
+                    alpha = -VALUE_INFINITE;
+                    beta  =  VALUE_INFINITE;
+                }
 
-            } while (abs(bestValue) < VALUE_KNOWN_WIN);
+                assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
+            }
         }
 
         // Skills: Do we need to pick now the best move ?
@@ -432,8 +388,8 @@ namespace {
         if (!Signals.stop && Options["Use Search Log"])
         {
             Log log(Options["Search Log Filename"]);
-            log << pretty_pv(pos, depth, bestValue, SearchTime.elapsed(), &RootMoves[0].pv[0])
-                << endl;
+            log << pretty_pv(pos, depth, bestValue, Time::now() - SearchTime, &RootMoves[0].pv[0])
+                << std::endl;
         }
 
         // Filter out startup noise when monitoring best move stability
@@ -452,16 +408,16 @@ namespace {
             // Stop search if most of available time is already consumed. We
             // probably don't have enough time to search the first move at the
             // next iteration anyway.
-            if (SearchTime.elapsed() > (TimeMgr.available_time() * 62) / 100)
+            if (Time::now() - SearchTime > (TimeMgr.available_time() * 62) / 100)
                 stop = true;
 
             // Stop search early if one move seems to be much better than others
             if (    depth >= 12
                 && !stop
                 && (   (bestMoveNeverChanged &&  pos.captured_piece_type())
-                    || SearchTime.elapsed() > (TimeMgr.available_time() * 40) / 100))
+                    || Time::now() - SearchTime > (TimeMgr.available_time() * 40) / 100))
             {
-                Value rBeta = bestValue - EasyMoveMargin;
+                Value rBeta = bestValue - 2 * PawnValueMg;
                 (ss+1)->excludedMove = RootMoves[0].pv[0];
                 (ss+1)->skipNullMove = true;
                 Value v = search<NonPV>(pos, ss+1, rBeta - 1, rBeta, (depth - 3) * ONE_PLY);
@@ -510,75 +466,64 @@ namespace {
     const bool RootNode = (NT == Root || NT == SplitPointRoot);
 
     assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
-    assert((alpha == beta - 1) || PvNode);
+    assert(PvNode || (alpha == beta - 1));
     assert(depth > DEPTH_ZERO);
 
     Move movesSearched[64];
     StateInfo st;
     const TTEntry *tte;
+    SplitPoint* sp;
     Key posKey;
     Move ttMove, move, excludedMove, bestMove, threatMove;
     Depth ext, newDepth;
-    Bound bt;
-    Value bestValue, value, oldAlpha, ttValue;
-    Value refinedValue, nullValue, futilityBase, futilityValue;
-    bool isPvMove, inCheck, singularExtensionNode, givesCheck;
+    Value bestValue, value, ttValue;
+    Value refinedValue, nullValue, futilityValue;
+    bool inCheck, givesCheck, pvMove, singularExtensionNode;
     bool captureOrPromotion, dangerous, doFullDepthSearch;
-    int moveCount = 0, playedMoveCount = 0;
-    Thread* thisThread = pos.this_thread();
-    SplitPoint* sp = NULL;
+    int moveCount, playedMoveCount;
 
-    refinedValue = bestValue = value = -VALUE_INFINITE;
-    oldAlpha = alpha;
+    // Step 1. Initialize node
+    Thread* thisThread = pos.this_thread();
+    moveCount = playedMoveCount = 0;
     inCheck = pos.in_check();
-    ss->ply = (ss-1)->ply + 1;
 
-    // Used to send selDepth info to GUI
-    if (PvNode && thisThread->maxPly < ss->ply)
-        thisThread->maxPly = ss->ply;
-
-    // Step 1. Initialize node
     if (SpNode)
     {
-        tte = NULL;
-        ttMove = excludedMove = MOVE_NONE;
-        ttValue = VALUE_ZERO;
         sp = ss->sp;
-        bestMove = sp->bestMove;
+        bestMove   = sp->bestMove;
         threatMove = sp->threatMove;
-        bestValue = sp->bestValue;
-        moveCount = sp->moveCount; // Lock must be held here
+        bestValue  = sp->bestValue;
+        tte = NULL;
+        ttMove = excludedMove = MOVE_NONE;
+        ttValue = VALUE_NONE;
 
-        assert(bestValue > -VALUE_INFINITE && moveCount > 0);
+        assert(sp->bestValue > -VALUE_INFINITE && sp->moveCount > 0);
 
         goto split_point_start;
     }
-    else
-    {
-        ss->currentMove = threatMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
-        (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
-        (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
 
-    }
+    bestValue = -VALUE_INFINITE;
+    ss->currentMove = threatMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
+    ss->ply = (ss-1)->ply + 1;
+    (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
+    (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
+
+    // Used to send selDepth info to GUI
+    if (PvNode && thisThread->maxPly < ss->ply)
+        thisThread->maxPly = ss->ply;
 
-    // Step 2. Check for aborted search and immediate draw
-    // Enforce node limit here. FIXME: This only works with 1 search thread.
-    if (Limits.nodes && pos.nodes_searched() >= Limits.nodes)
-        Signals.stop = true;
-
-    if ((   Signals.stop
-         || pos.is_draw<false>()
-         || ss->ply > MAX_PLY) && !RootNode)
-        return VALUE_DRAW;
-
-    // Step 3. Mate distance pruning. Even if we mate at the next move our score
-    // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
-    // a shorter mate was found upward in the tree then there is no need to search
-    // further, we will never beat current alpha. Same logic but with reversed signs
-    // applies also in the opposite condition of being mated instead of giving mate,
-    // in this case return a fail-high score.
     if (!RootNode)
     {
+        // Step 2. Check for aborted search and immediate draw
+        if (Signals.stop || pos.is_draw<false>() || ss->ply > MAX_PLY)
+            return Eval::ValueDraw[pos.side_to_move()];
+
+        // Step 3. Mate distance pruning. Even if we mate at the next move our score
+        // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
+        // a shorter mate was found upward in the tree then there is no need to search
+        // further, we will never beat current alpha. Same logic but with reversed signs
+        // applies also in the opposite condition of being mated instead of giving mate,
+        // in this case return a fail-high score.
         alpha = std::max(mated_in(ss->ply), alpha);
         beta = std::min(mate_in(ss->ply+1), beta);
         if (alpha >= beta)
@@ -592,14 +537,17 @@ namespace {
     posKey = excludedMove ? pos.exclusion_key() : pos.key();
     tte = TT.probe(posKey);
     ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE;
-    ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_ZERO;
+    ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
 
     // At PV nodes we check for exact scores, while at non-PV nodes we check for
     // a fail high/low. Biggest advantage at probing at PV nodes is to have a
     // smooth experience in analysis mode. We don't probe at Root nodes otherwise
     // we should also update RootMoveList to avoid bogus output.
-    if (!RootNode && tte && (PvNode ? tte->depth() >= depth && tte->type() == BOUND_EXACT
-                                    : can_return_tt(tte, depth, ttValue, beta)))
+    if (   !RootNode
+        && tte && tte->depth() >= depth
+        && (           PvNode ?  tte->type() == BOUND_EXACT
+            : ttValue >= beta ? (tte->type() & BOUND_LOWER)
+                              : (tte->type() & BOUND_UPPER)))
     {
         TT.refresh(tte);
         ss->currentMove = ttMove; // Can be MOVE_NONE
@@ -617,7 +565,7 @@ namespace {
 
     // Step 5. Evaluate the position statically and update parent's gain statistics
     if (inCheck)
-        ss->eval = ss->evalMargin = VALUE_NONE;
+        ss->eval = ss->evalMargin = refinedValue = VALUE_NONE;
     else if (tte)
     {
         assert(tte->static_value() != VALUE_NONE);
@@ -646,7 +594,7 @@ namespace {
 
     // Step 6. Razoring (is omitted in PV nodes)
     if (   !PvNode
-        &&  depth < RazorDepth
+        &&  depth < 4 * ONE_PLY
         && !inCheck
         &&  refinedValue + razor_margin(depth) < beta
         &&  ttMove == MOVE_NONE
@@ -666,12 +614,12 @@ namespace {
     // the score by more than futility_margin(depth) if we do a null move.
     if (   !PvNode
         && !ss->skipNullMove
-        &&  depth < RazorDepth
+        &&  depth < 4 * ONE_PLY
         && !inCheck
-        &&  refinedValue - futility_margin(depth, 0) >= beta
+        &&  refinedValue - FutilityMargins[depth][0] >= beta
         &&  abs(beta) < VALUE_MATE_IN_MAX_PLY
         &&  pos.non_pawn_material(pos.side_to_move()))
-        return refinedValue - futility_margin(depth, 0);
+        return refinedValue - FutilityMargins[depth][0];
 
     // Step 8. Null move search with verification search (is omitted in PV nodes)
     if (   !PvNode
@@ -725,7 +673,7 @@ namespace {
             // parent node, which will trigger a re-search with full depth).
             threatMove = (ss+1)->currentMove;
 
-            if (   depth < ThreatDepth
+            if (   depth < 5 * ONE_PLY
                 && (ss-1)->reduction
                 && threatMove != MOVE_NONE
                 && connected_moves(pos, (ss-1)->currentMove, threatMove))
@@ -738,7 +686,7 @@ namespace {
     // and a reduced search returns a value much above beta, we can (almost) safely
     // prune the previous move.
     if (   !PvNode
-        &&  depth >= RazorDepth + ONE_PLY
+        &&  depth >= 5 * ONE_PLY
         && !inCheck
         && !ss->skipNullMove
         &&  excludedMove == MOVE_NONE
@@ -767,9 +715,9 @@ namespace {
     }
 
     // Step 10. Internal iterative deepening
-    if (   depth >= IIDDepth[PvNode]
+    if (   depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY)
         && ttMove == MOVE_NONE
-        && (PvNode || (!inCheck && ss->eval + IIDMargin >= beta)))
+        && (PvNode || (!inCheck && ss->eval + Value(256) >= beta)))
     {
         Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2);
 
@@ -785,10 +733,10 @@ split_point_start: // At split points actual search starts from here
 
     MovePicker mp(pos, ttMove, depth, H, ss, PvNode ? -VALUE_INFINITE : beta);
     CheckInfo ci(pos);
-    futilityBase = ss->eval + ss->evalMargin;
+    value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
     singularExtensionNode =   !RootNode
                            && !SpNode
-                           &&  depth >= SingularExtensionDepth[PvNode]
+                           &&  depth >= (PvNode ? 6 * ONE_PLY : 8 * ONE_PLY)
                            &&  ttMove != MOVE_NONE
                            && !excludedMove // Recursive singular search is not allowed
                            && (tte->type() & BOUND_LOWER)
@@ -796,10 +744,7 @@ split_point_start: // At split points actual search starts from here
 
     // Step 11. Loop through moves
     // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
-    while (    bestValue < beta
-           && (move = mp.next_move<SpNode>()) != MOVE_NONE
-           && !thisThread->cutoff_occurred()
-           && !Signals.stop)
+    while ((move = mp.next_move<SpNode>()) != MOVE_NONE)
     {
       assert(is_ok(move));
 
@@ -812,12 +757,12 @@ split_point_start: // At split points actual search starts from here
       if (RootNode && !std::count(RootMoves.begin() + PVIdx, RootMoves.end(), move))
           continue;
 
-      // At PV and SpNode nodes we want all moves to be legal since the beginning
-      if ((PvNode || SpNode) && !pos.pl_move_is_legal(move, ci.pinned))
-          continue;
-
       if (SpNode)
       {
+          // Shared counter cannot be decremented later if move turns out to be illegal
+          if (!pos.pl_move_is_legal(move, ci.pinned))
+              continue;
+
           moveCount = ++sp->moveCount;
           sp->mutex.unlock();
       }
@@ -828,17 +773,23 @@ split_point_start: // At split points actual search starts from here
       {
           Signals.firstRootMove = (moveCount == 1);
 
-          if (thisThread == Threads.main_thread() && SearchTime.elapsed() > 2000)
-              cout << "info depth " << depth / ONE_PLY
-                   << " currmove " << move_to_uci(move, Chess960)
-                   << " currmovenumber " << moveCount + PVIdx << endl;
+          if (thisThread == Threads.main_thread() && Time::now() - SearchTime > 2000)
+              sync_cout << "info depth " << depth / ONE_PLY
+                        << " currmove " << move_to_uci(move, Chess960)
+                        << " currmovenumber " << moveCount + PVIdx << sync_endl;
       }
 
-      isPvMove = (PvNode && moveCount <= 1);
+      ext = DEPTH_ZERO;
       captureOrPromotion = pos.is_capture_or_promotion(move);
       givesCheck = pos.move_gives_check(move, ci);
-      dangerous = givesCheck || is_dangerous(pos, move, captureOrPromotion);
-      ext = DEPTH_ZERO;
+      dangerous =   givesCheck
+                 || pos.is_passed_pawn_push(move)
+                 || type_of(move) == CASTLE
+                 || (   captureOrPromotion // Entering a pawn endgame?
+                     && type_of(pos.piece_on(to_sq(move))) != PAWN
+                     && type_of(move) == NORMAL
+                     && (  pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
+                         - PieceValue[Mg][pos.piece_on(to_sq(move))] == VALUE_ZERO));
 
       // Step 12. Extend checks and, in PV nodes, also dangerous moves
       if (PvNode && dangerous)
@@ -866,7 +817,7 @@ split_point_start: // At split points actual search starts from here
           ss->excludedMove = MOVE_NONE;
 
           if (value < rBeta)
-              ext = ONE_PLY;
+              ext = rBeta >= beta ? ONE_PLY + ONE_PLY / 2 : ONE_PLY;
       }
 
       // Update current move (this must be done after singular extension search)
@@ -878,10 +829,12 @@ split_point_start: // At split points actual search starts from here
           && !inCheck
           && !dangerous
           &&  move != ttMove
-          && (bestValue > VALUE_MATED_IN_MAX_PLY || bestValue == -VALUE_INFINITE))
+          && (bestValue > VALUE_MATED_IN_MAX_PLY || (   bestValue == -VALUE_INFINITE
+                                                     && alpha > VALUE_MATED_IN_MAX_PLY)))
       {
           // Move count based pruning
-          if (   moveCount >= futility_move_count(depth)
+          if (   depth < 16 * ONE_PLY
+              && moveCount >= FutilityMoveCounts[depth]
               && (!threatMove || !connected_threat(pos, move, threatMove)))
           {
               if (SpNode)
@@ -894,7 +847,7 @@ split_point_start: // At split points actual search starts from here
           // We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth,
           // but fixing this made program slightly weaker.
           Depth predictedDepth = newDepth - reduction<PvNode>(depth, moveCount);
-          futilityValue =  futilityBase + futility_margin(predictedDepth, moveCount)
+          futilityValue =  ss->eval + ss->evalMargin + futility_margin(predictedDepth, moveCount)
                          + H.gain(pos.piece_moved(move), to_sq(move));
 
           if (futilityValue < beta)
@@ -923,6 +876,7 @@ split_point_start: // At split points actual search starts from here
           continue;
       }
 
+      pvMove = PvNode ? moveCount == 1 : false;
       ss->currentMove = move;
       if (!SpNode && !captureOrPromotion && playedMoveCount < 64)
           movesSearched[playedMoveCount++] = move;
@@ -933,7 +887,7 @@ split_point_start: // At split points actual search starts from here
       // Step 15. Reduced depth search (LMR). If the move fails high will be
       // re-searched at full depth.
       if (    depth > 3 * ONE_PLY
-          && !isPvMove
+          && !pvMove
           && !captureOrPromotion
           && !dangerous
           &&  ss->killers[0] != move
@@ -949,7 +903,7 @@ split_point_start: // At split points actual search starts from here
           ss->reduction = DEPTH_ZERO;
       }
       else
-          doFullDepthSearch = !isPvMove;
+          doFullDepthSearch = !pvMove;
 
       // Step 16. Full depth search, when LMR is skipped or fails high
       if (doFullDepthSearch)
@@ -962,7 +916,7 @@ split_point_start: // At split points actual search starts from here
       // Only for PV nodes do a full PV search on the first move or after a fail
       // high, in the latter case search only if value < beta, otherwise let the
       // parent node to fail low with value <= alpha and to try another move.
-      if (PvNode && (isPvMove || (value > alpha && (RootNode || value < beta))))
+      if (PvNode && (pvMove || (value > alpha && (RootNode || value < beta))))
           value = newDepth < ONE_PLY ? -qsearch<PV>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
                                      : - search<PV>(pos, ss+1, -beta, -alpha, newDepth);
 
@@ -983,12 +937,15 @@ split_point_start: // At split points actual search starts from here
       // was aborted because the user interrupted the search or because we
       // ran out of time. In this case, the return value of the search cannot
       // be trusted, and we don't update the best move and/or PV.
-      if (RootNode && !Signals.stop)
+      if (Signals.stop || thisThread->cutoff_occurred())
+          return bestValue;
+
+      if (RootNode)
       {
           RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move);
 
           // PV move or new best move ?
-          if (isPvMove || value > alpha)
+          if (pvMove || value > alpha)
           {
               rm.score = value;
               rm.extract_pv_from_tt(pos);
@@ -996,7 +953,7 @@ split_point_start: // At split points actual search starts from here
               // We record how often the best move has been changed in each
               // iteration. This information is used for time management: When
               // the best move changes frequently, we allocate some more time.
-              if (!isPvMove && MultiPV == 1)
+              if (!pvMove && MultiPV == 1)
                   BestMoveChanges++;
           }
           else
@@ -1004,82 +961,80 @@ split_point_start: // At split points actual search starts from here
               // is not a problem when sorting becuase sort is stable and move
               // position in the list is preserved, just the PV is pushed up.
               rm.score = -VALUE_INFINITE;
-
       }
 
       if (value > bestValue)
       {
           bestValue = value;
-          bestMove = move;
+          if (SpNode) sp->bestValue = value;
 
-          if (   PvNode
-              && value > alpha
-              && value < beta) // We want always alpha < beta
-              alpha = value;
-
-          if (SpNode && !thisThread->cutoff_occurred())
+          if (value > alpha)
           {
-              sp->bestValue = value;
-              sp->bestMove = move;
-              sp->alpha = alpha;
-
-              if (value >= beta)
-                  sp->cutoff = true;
+              bestMove = move;
+              if (SpNode) sp->bestMove = move;
+
+              if (PvNode && value < beta)
+              {
+                  alpha = value; // Update alpha here! Always alpha < beta
+                  if (SpNode) sp->alpha = value;
+              }
+              else // Fail high
+              {
+                  if (SpNode) sp->cutoff = true;
+                  break;
+              }
           }
       }
 
-      // Step 19. Check for split
+      // Step 19. Check for splitting the search
       if (   !SpNode
           &&  depth >= Threads.min_split_depth()
           &&  bestValue < beta
-          &&  Threads.available_slave_exists(thisThread)
-          && !Signals.stop
-          && !thisThread->cutoff_occurred())
+          &&  Threads.available_slave_exists(thisThread))
+      {
           bestValue = Threads.split<FakeSplit>(pos, ss, alpha, beta, bestValue, &bestMove,
-                                               depth, threatMove, moveCount, &mp, NT);
+                                               depth, threatMove, moveCount, mp, NT);
+          break;
+      }
     }
 
+    if (SpNode)
+        return bestValue;
+
     // Step 20. Check for mate and stalemate
     // All legal moves have been searched and if there are no legal moves, it
     // must be mate or stalemate. Note that we can have a false positive in
     // case of Signals.stop or thread.cutoff_occurred() are set, but this is
     // harmless because return value is discarded anyhow in the parent nodes.
     // If we are in a singular extension search then return a fail low score.
+    // A split node has at least one move, the one tried before to be splitted.
     if (!moveCount)
-        return excludedMove ? oldAlpha : inCheck ? mated_in(ss->ply) : VALUE_DRAW;
+        return excludedMove ? alpha : inCheck ? mated_in(ss->ply) : VALUE_DRAW;
 
     // If we have pruned all the moves without searching return a fail-low score
     if (bestValue == -VALUE_INFINITE)
     {
         assert(!playedMoveCount);
 
-        bestValue = oldAlpha;
+        bestValue = alpha;
     }
 
-    // Step 21. Update tables
-    // Update transposition table entry, killers and history
-    if (!SpNode && !Signals.stop && !thisThread->cutoff_occurred())
+    if (bestValue >= beta) // Failed high
     {
-        move = bestValue <= oldAlpha ? MOVE_NONE : bestMove;
-        bt   = bestValue <= oldAlpha ? BOUND_UPPER
-             : bestValue >= beta ? BOUND_LOWER : BOUND_EXACT;
-
-        TT.store(posKey, value_to_tt(bestValue, ss->ply), bt, depth, move, ss->eval, ss->evalMargin);
+        TT.store(posKey, value_to_tt(bestValue, ss->ply), BOUND_LOWER, depth,
+                 bestMove, ss->eval, ss->evalMargin);
 
-        // Update killers and history for non capture cut-off moves
-        if (    bestValue >= beta
-            && !pos.is_capture_or_promotion(move)
-            && !inCheck)
+        if (!pos.is_capture_or_promotion(bestMove) && !inCheck)
         {
-            if (move != ss->killers[0])
+            if (bestMove != ss->killers[0])
             {
                 ss->killers[1] = ss->killers[0];
-                ss->killers[0] = move;
+                ss->killers[0] = bestMove;
             }
 
             // Increase history value of the cut-off move
             Value bonus = Value(int(depth) * int(depth));
-            H.add(pos.piece_moved(move), to_sq(move), bonus);
+            H.add(pos.piece_moved(bestMove), to_sq(bestMove), bonus);
 
             // Decrease history of all the other played non-capture moves
             for (int i = 0; i < playedMoveCount - 1; i++)
@@ -1089,6 +1044,10 @@ split_point_start: // At split points actual search starts from here
             }
         }
     }
+    else // Failed low or PV search
+        TT.store(posKey, value_to_tt(bestValue, ss->ply),
+                 PvNode && bestMove != MOVE_NONE ? BOUND_EXACT : BOUND_UPPER,
+                 depth, bestMove, ss->eval, ss->evalMargin);
 
     assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
 
@@ -1107,38 +1066,41 @@ split_point_start: // At split points actual search starts from here
 
     assert(NT == PV || NT == NonPV);
     assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
-    assert((alpha == beta - 1) || PvNode);
+    assert(PvNode || (alpha == beta - 1));
     assert(depth <= DEPTH_ZERO);
 
     StateInfo st;
-    Move ttMove, move, bestMove;
-    Value ttValue, bestValue, value, evalMargin, futilityValue, futilityBase;
-    bool inCheck, enoughMaterial, givesCheck, evasionPrunable;
     const TTEntry* tte;
+    Key posKey;
+    Move ttMove, move, bestMove;
+    Value bestValue, value, ttValue, futilityValue, futilityBase;
+    bool inCheck, givesCheck, enoughMaterial, evasionPrunable;
     Depth ttDepth;
-    Bound bt;
-    Value oldAlpha = alpha;
 
+    inCheck = pos.in_check();
     ss->currentMove = bestMove = MOVE_NONE;
     ss->ply = (ss-1)->ply + 1;
 
     // Check for an instant draw or maximum ply reached
     if (pos.is_draw<true>() || ss->ply > MAX_PLY)
-        return VALUE_DRAW;
+        return Eval::ValueDraw[pos.side_to_move()];
+
+    // Transposition table lookup. At PV nodes, we don't use the TT for
+    // pruning, but only for move ordering.
+    posKey = pos.key();
+    tte = TT.probe(posKey);
+    ttMove = tte ? tte->move() : MOVE_NONE;
+    ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_NONE;
 
     // Decide whether or not to include checks, this fixes also the type of
     // TT entry depth that we are going to use. Note that in qsearch we use
     // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
-    inCheck = pos.in_check();
-    ttDepth = (inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS);
+    ttDepth = inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS;
 
-    // Transposition table lookup. At PV nodes, we don't use the TT for
-    // pruning, but only for move ordering.
-    tte = TT.probe(pos.key());
-    ttMove = (tte ? tte->move() : MOVE_NONE);
-    ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_ZERO;
-
-    if (!PvNode && tte && can_return_tt(tte, ttDepth, ttValue, beta))
+    if (   tte && tte->depth() >= ttDepth
+        && (           PvNode ?  tte->type() == BOUND_EXACT
+            : ttValue >= beta ? (tte->type() & BOUND_LOWER)
+                              : (tte->type() & BOUND_UPPER)))
     {
         ss->currentMove = ttMove; // Can be MOVE_NONE
         return ttValue;
@@ -1147,8 +1109,8 @@ split_point_start: // At split points actual search starts from here
     // Evaluate the position statically
     if (inCheck)
     {
+        ss->eval = ss->evalMargin = VALUE_NONE;
         bestValue = futilityBase = -VALUE_INFINITE;
-        ss->eval = evalMargin = VALUE_NONE;
         enoughMaterial = false;
     }
     else
@@ -1157,17 +1119,17 @@ split_point_start: // At split points actual search starts from here
         {
             assert(tte->static_value() != VALUE_NONE);
 
-            evalMargin = tte->static_value_margin();
             ss->eval = bestValue = tte->static_value();
+            ss->evalMargin = tte->static_value_margin();
         }
         else
-            ss->eval = bestValue = evaluate(pos, evalMargin);
+            ss->eval = bestValue = evaluate(pos, ss->evalMargin);
 
         // Stand pat. Return immediately if static value is at least beta
         if (bestValue >= beta)
         {
             if (!tte)
-                TT.store(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, evalMargin);
+                TT.store(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, ss->evalMargin);
 
             return bestValue;
         }
@@ -1175,7 +1137,7 @@ split_point_start: // At split points actual search starts from here
         if (PvNode && bestValue > alpha)
             alpha = bestValue;
 
-        futilityBase = ss->eval + evalMargin + FutilityMarginQS;
+        futilityBase = ss->eval + ss->evalMargin + Value(128);
         enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMg;
     }
 
@@ -1187,8 +1149,7 @@ split_point_start: // At split points actual search starts from here
     CheckInfo ci(pos);
 
     // Loop through the moves until no moves remain or a beta cutoff occurs
-    while (   bestValue < beta
-           && (move = mp.next_move<false>()) != MOVE_NONE)
+    while ((move = mp.next_move<false>()) != MOVE_NONE)
     {
       assert(is_ok(move));
 
@@ -1255,21 +1216,31 @@ split_point_start: // At split points actual search starts from here
 
       // Make and search the move
       pos.do_move(move, st, ci, givesCheck);
-      value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth-ONE_PLY);
+      value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
       pos.undo_move(move);
 
       assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
 
-      // New best move?
+      // Check for new best move
       if (value > bestValue)
       {
           bestValue = value;
-          bestMove = move;
 
-          if (   PvNode
-              && value > alpha
-              && value < beta) // We want always alpha < beta
-              alpha = value;
+          if (value > alpha)
+          {
+              if (PvNode && value < beta) // Update alpha here! Always alpha < beta
+              {
+                  alpha = value;
+                  bestMove = move;
+              }
+              else // Fail high
+              {
+                  TT.store(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
+                           ttDepth, move, ss->eval, ss->evalMargin);
+
+                  return value;
+              }
+          }
        }
     }
 
@@ -1278,12 +1249,9 @@ split_point_start: // At split points actual search starts from here
     if (inCheck && bestValue == -VALUE_INFINITE)
         return mated_in(ss->ply); // Plies to mate from the root
 
-    // Update transposition table
-    move = bestValue <= oldAlpha ? MOVE_NONE : bestMove;
-    bt   = bestValue <= oldAlpha ? BOUND_UPPER
-         : bestValue >= beta ? BOUND_LOWER : BOUND_EXACT;
-
-    TT.store(pos.key(), value_to_tt(bestValue, ss->ply), bt, ttDepth, move, ss->eval, evalMargin);
+    TT.store(posKey, value_to_tt(bestValue, ss->ply),
+             PvNode && bestMove != MOVE_NONE ? BOUND_EXACT : BOUND_UPPER,
+             ttDepth, bestMove, ss->eval, ss->evalMargin);
 
     assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
 
@@ -1456,20 +1424,6 @@ split_point_start: // At split points actual search starts from here
   }
 
 
-  // can_return_tt() returns true if a transposition table score can be used to
-  // cut-off at a given point in search.
-
-  bool can_return_tt(const TTEntry* tte, Depth depth, Value v, Value beta) {
-
-    return   (   tte->depth() >= depth
-              || v >= std::max(VALUE_MATE_IN_MAX_PLY, beta)
-              || v < std::min(VALUE_MATED_IN_MAX_PLY, beta))
-
-          && (   ((tte->type() & BOUND_LOWER) && v >= beta)
-              || ((tte->type() & BOUND_UPPER) && v < beta));
-  }
-
-
   // refine_eval() returns the transposition table score if possible, otherwise
   // falls back on static position evaluation.
 
@@ -1495,7 +1449,7 @@ split_point_start: // At split points actual search starts from here
     static RKISS rk;
 
     // PRNG sequence should be not deterministic
-    for (int i = Time::current_time().msec() % 50; i > 0; i--)
+    for (int i = Time::now() % 50; i > 0; i--)
         rk.rand<unsigned>();
 
     // RootMoves are already sorted by score in descending order
@@ -1513,7 +1467,7 @@ split_point_start: // At split points actual search starts from here
         int s = RootMoves[i].score;
 
         // Don't allow crazy blunders even at very low skills
-        if (i > 0 && RootMoves[i-1].score > s + EasyMoveMargin)
+        if (i > 0 && RootMoves[i-1].score > s + 2 * PawnValueMg)
             break;
 
         // This is our magic formula
@@ -1537,7 +1491,7 @@ split_point_start: // At split points actual search starts from here
   string uci_pv(const Position& pos, int depth, Value alpha, Value beta) {
 
     std::stringstream s;
-    int t = SearchTime.elapsed();
+    Time::point elaspsed = Time::now() - SearchTime + 1;
     int selDepth = 0;
 
     for (size_t i = 0; i < Threads.size(); i++)
@@ -1558,12 +1512,12 @@ split_point_start: // At split points actual search starts from here
             s << "\n";
 
         s << "info depth " << d
-          << " seldepth " << selDepth
-          << " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v))
-          << " nodes " << pos.nodes_searched()
-          << " nps " << (t > 0 ? pos.nodes_searched() * 1000 / t : 0)
-          << " time " << t
-          << " multipv " << i + 1
+          << " seldepth "  << selDepth
+          << " score "     << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v))
+          << " nodes "     << pos.nodes_searched()
+          << " nps "       << pos.nodes_searched() * 1000 / elaspsed
+          << " time "      << elaspsed
+          << " multipv "   << i + 1
           << " pv";
 
         for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; j++)
@@ -1709,6 +1663,10 @@ void Thread::idle_loop() {
 
           sp->mutex.lock();
 
+          assert(sp->activePositions[idx] == NULL);
+
+          sp->activePositions[idx] = &pos;
+
           if (sp->nodeType == Root)
               search<SplitPointRoot>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
           else if (sp->nodeType == PV)
@@ -1721,6 +1679,7 @@ void Thread::idle_loop() {
           assert(is_searching);
 
           is_searching = false;
+          sp->activePositions[idx] = NULL;
           sp->slavesMask &= ~(1ULL << idx);
           sp->nodes += pos.nodes_searched();
 
@@ -1750,26 +1709,57 @@ void Thread::idle_loop() {
 
 void check_time() {
 
-  static Time lastInfoTime = Time::current_time();
+  static Time::point lastInfoTime = Time::now();
+  int64_t nodes = 0; // Workaround silly 'uninitialized' gcc warning
 
-  if (lastInfoTime.elapsed() >= 1000)
+  if (Time::now() - lastInfoTime >= 1000)
   {
-      lastInfoTime.restart();
+      lastInfoTime = Time::now();
       dbg_print();
   }
 
   if (Limits.ponder)
       return;
 
-  int e = SearchTime.elapsed();
+  if (Limits.nodes)
+  {
+      Threads.mutex.lock();
+
+      nodes = RootPosition.nodes_searched();
+
+      // Loop across all split points and sum accumulated SplitPoint nodes plus
+      // all the currently active slaves positions.
+      for (size_t i = 0; i < Threads.size(); i++)
+          for (int j = 0; j < Threads[i].splitPointsCnt; j++)
+          {
+              SplitPoint& sp = Threads[i].splitPoints[j];
+
+              sp.mutex.lock();
+
+              nodes += sp.nodes;
+              Bitboard sm = sp.slavesMask;
+              while (sm)
+              {
+                  Position* pos = sp.activePositions[pop_lsb(&sm)];
+                  nodes += pos ? pos->nodes_searched() : 0;
+              }
+
+              sp.mutex.unlock();
+          }
+
+      Threads.mutex.unlock();
+  }
+
+  Time::point elapsed = Time::now() - SearchTime;
   bool stillAtFirstMove =    Signals.firstRootMove
                          && !Signals.failedLowAtRoot
-                         &&  e > TimeMgr.available_time();
+                         &&  elapsed > TimeMgr.available_time();
 
-  bool noMoreTime =   e > TimeMgr.maximum_time() - 2 * TimerResolution
+  bool noMoreTime =   elapsed > TimeMgr.maximum_time() - 2 * TimerResolution
                    || stillAtFirstMove;
 
   if (   (Limits.use_time_management() && noMoreTime)
-      || (Limits.movetime && e >= Limits.movetime))
+      || (Limits.movetime && elapsed >= Limits.movetime)
+      || (Limits.nodes && nodes >= Limits.nodes))
       Signals.stop = true;
 }