]> git.sesse.net Git - wloh/blob - bayeswf.cpp
Make the output more machine-friendly.
[wloh] / bayeswf.cpp
1 #include <stdio.h>
2 #include <math.h>
3 #include <string.h>
4 #include <stdlib.h>
5
6 #include <map>
7 #include <vector>
8 #include <string>
9 #include <algorithm>
10
11 using namespace std;
12
13 #define MAX_PLAYERS 4096
14
15 float mu[MAX_PLAYERS];
16 float sigma[MAX_PLAYERS];
17
18 #define EPSILON 1e-3
19
20 /*
21  * L(mu_vec, sigma_vec, matches) = product[ L(mu_A, sigma_A, mu_B, sigma_B, score_AB - score_BA) ]
22  * log-likelihood = sum[ log( L(mu_A, sigma_A, mu_B, sigma_B, score_AB - score_BA) ) ]
23  * 
24  * L(mu1, sigma1, mu2, sigma2, score2 - score1) = sigmoid(mu2 - mu1, sqrt(sigma1² + sigma2²), (score2 - score1))
25  *
26  * pdf := 1/(sigma * sqrt(2*Pi)) * exp(-(x - mu)^2 / (2 * sigma^2));        
27  * pdfs := subs({ mu = mu1 - mu2, sigma = sqrt(sigma1^2 + sigma2^2) }, pdf);
28  * diff(log(pdfs), mu1); 
29  */
30
31 struct match {
32         int other_player;
33         int margin;
34         float weight;
35 };
36 map<int, vector<match> > matches_for_player;
37
38 void dump_scores(const vector<string> &players, const float *mu, const float *sigma, int num_players)
39 {
40 #if 0
41         for (int i = 0; i < num_players; ++i) {
42                 printf("%s=[%5.1f, %4.1f] ", players[i].c_str(), mu[i], sigma[i]);
43         }
44         printf("\n");
45 #elif 0
46         for (int i = 0; i < num_players; ++i) {
47                 printf("%5.1f ", mu[i]);
48         }
49         printf("\n");
50 #else
51         for (int i = 0; i < num_players; ++i) {
52                 printf("%f %s\n", mu[i], players[i].c_str());
53         }
54 #endif
55 }
56
57 /*
58  * diff(logL, mu1) = -w * (mu1 - mu2 - x) / sigma_c^2
59  * maximizer for mu1 is given by: sum_i[ (w_i/sigma_c_i)^2 (mu1 - mu2_i - x_i) ] = 0
60  *                                sum_i[ (w_i/sigma_c_i)^2 mu1 ] = sum_i [ (w_i/sigma_c_i)^2 ( mu2_i + x_i ) ]
61  *                                mu1 = sum_i [ (w_i/sigma_c_i)^2 ( mu2_i + x_i ) ] / sum_i[ (w_i/sigma_c_i)^2 ]
62  */
63 void update_mu(float *mu, float *sigma, int player_num, const vector<match> &matches)
64 {
65         if (matches.empty()) {
66                 return;
67         }
68
69         float nom = 0.0f, denom = 0.0f;
70         for (unsigned i = 0; i < matches.size(); ++i) {
71                 float sigma1 = sigma[player_num];
72                 float sigma2 = sigma[matches[i].other_player];
73                 float inv_sigma_c2 = matches[i].weight / (sigma1 * sigma1 + sigma2 * sigma2);
74                 float x = matches[i].margin; // / 70.0f;
75         
76                 nom += (mu[matches[i].other_player] + x) * inv_sigma_c2;
77                 denom += inv_sigma_c2;
78         }
79         mu[player_num] = nom / denom;
80 }
81
82 /*
83  * diff(logL, sigma1) = sigma1 (-sigma1² - sigma2² + (x - mu)²) / sigma_c²
84  * maximizer for sigma1 is given by: sum_i[ (1/sigma_c_i)² sigma1 ((x - mu)² - (sigma1² + sigma2²) ] = 0
85  *                                   sum_i[ (x - mu)² - sigma1² - sigma2² ] = 0                                  |: sigma1 != 0, sigma2 != 0
86  *                                   sum_i[ (x - mu)² - sigma2² ] = sum[ sigma1² ]
87  *                                   sigma1 = sqrt( sum_i[ (x - mu)² - sigma2² ] / N )
88  */
89 void update_sigma(float *mu, float *sigma, int player_num, const vector<match> &matches)
90 {
91         if (matches.size() < 2) {
92                 return;
93         }
94
95         float sum = 0.0f;
96         for (unsigned i = 0; i < matches.size(); ++i) {
97                 float mu1 = mu[player_num];
98                 float mu2 = mu[matches[i].other_player];
99                 float mu = mu1 - mu2;
100                 float sigma2 = sigma[matches[i].other_player];
101                 float x = matches[i].margin;
102
103                 //fprintf(stderr, "x=%f mu=%f sigma2=%f   add %f-%f = %f\n", x, mu, sigma2, (x-mu)*(x-mu), sigma2*sigma2, (x - mu) * (x - mu) - sigma2 * sigma2);
104                 sum += (x - mu) * (x - mu) - sigma2 * sigma2;
105         }
106
107         if (sum <= 0) {
108                 return;
109         }
110         //fprintf(stderr, "sum=%f\n", sum);
111         sigma[player_num] = sqrt(sum / matches.size());
112 }
113
114 /*
115  * diff(logL, sigma) = w ( (x - mu)² - sigma² ) / sigma³
116  * maximizer for sigma is given by: sum_i[ (w_i/sigma)³ ((x - mu)² - sigma²) ] = 0
117  *                                   sum_i[ w_i ( (x - mu)² - sigma² ) ] = 0                            |: sigma != 0
118  *                                   sum_i[ w_i (x - mu)² ] = sum[ w_i sigma² ]
119  *                                   sigma = sqrt( sum_i[ w_i (x - mu)² ] / sum[w_i] )
120  */
121 void update_global_sigma(float *mu, float *sigma, int num_players)
122 {
123         float nom = 0.0f, denom = 0.0f;
124         for (int i = 0; i < num_players; ++i) {
125                 for (unsigned j = 0; j < matches_for_player[i].size(); ++j) {
126                         const match& m = matches_for_player[i][j];
127
128                         // Only count each match once.
129                         if (m.other_player <= i) {
130                                 continue;
131                         }
132
133                         float mu1 = mu[i];
134                         float mu2 = mu[m.other_player];
135                         float mu = mu1 - mu2;
136                         float x = m.margin;
137                         float w = m.weight;
138
139                         nom += w * ((x - mu) * (x - mu));
140                         denom += w;
141                 }
142         }
143
144         float best_sigma = sqrt(nom / denom) / sqrt(2.0f);  // Divide evenly between the two players.
145         for (int i = 0; i < num_players; ++i) {
146                 sigma[i] = best_sigma;
147         }
148 }
149
150 void renormalize(float *mu, float *sigma, int num_players)
151 {
152         float avg = 0.0f;
153         for (int i = 0; i < num_players; ++i) {
154                 avg += mu[i];
155         }
156         float corr = 1500.0f - avg / num_players;
157         for (int i = 0; i < num_players; ++i) {
158                 mu[i] += corr;
159         }
160 }
161
162 /*
163  * Compute Hessian matrix of the negative log-likelihood, ie. for each term in logL:
164  *
165  * M_ij = D_i D_j (- logL) = -w / sigma²                                for i != j
166  *                            w / sigma²                                for i == j
167  *
168  * Note that this does not depend on mu or the margin at all.
169  */
170 double hessian[MAX_PLAYERS][MAX_PLAYERS];
171 void construct_hessian(const float *mu, const float *sigma, int num_players)
172 {
173         memset(hessian, 0, sizeof(hessian));
174
175         for (int i = 0; i < num_players; ++i) {
176                 double sigma1 = sigma[i];
177
178                 for (unsigned k = 0; k < matches_for_player[i].size(); ++k) {
179                         int j = matches_for_player[i][k].other_player;
180
181                         double sigma2 = sigma[j];
182                         double sigma_sq = sigma1 * sigma1 + sigma2 * sigma2;
183
184                         float w = matches_for_player[i][k].weight;
185
186                         hessian[i][j] -= w / sigma_sq;
187                         hessian[i][i] += w / sigma_sq;
188                 }
189         }
190
191         for (int i = 0; i < num_players; ++i) {
192                 for (int j = 0; j < num_players; ++j) {
193                         printf("%.12f ", hessian[i][j]);
194                 }
195                 printf("\n");
196         }
197 }
198
199 int main(int argc, char **argv)
200 {
201         int num_players;
202         if (scanf("%d", &num_players) != 1) {
203                 fprintf(stderr, "Could't read number of players\n");
204                 exit(1);
205         }
206
207         if (num_players > MAX_PLAYERS) {
208                 fprintf(stderr, "Max %d players supported\n", MAX_PLAYERS);
209                 exit(1);
210         }
211
212         vector<string> players;
213         map<string, int> player_map;
214
215         for (int i = 0; i < num_players; ++i) {
216                 char buf[256];
217                 if (scanf("%s", buf) != 1) {
218                         fprintf(stderr, "Couldn't read player %d\n", i);
219                         exit(1);
220                 }
221
222                 players.push_back(buf);
223                 player_map[buf] = i;
224         }
225
226         int num_matches = 0;
227         for ( ;; ) {
228                 char pl1[256], pl2[256];
229                 int score1, score2;
230                 float weight;
231
232                 if (scanf("%s %s %d %d %f", pl1, pl2, &score1, &score2, &weight) != 5) {
233                         //fprintf(stderr, "Read %d matches.\n", num_matches);
234                         break;
235                 }
236
237                 ++num_matches;
238
239                 if (player_map.count(pl1) == 0) {
240                         fprintf(stderr, "Unknown player '%s'\n", pl1);
241                         exit(1);
242                 }
243                 if (player_map.count(pl2) == 0) {
244                         fprintf(stderr, "Unknown player '%s'\n", pl2);
245                         exit(1);
246                 }
247
248                 match m1;
249                 m1.other_player = player_map[pl2];
250                 m1.margin = score1 - score2;
251                 m1.weight = weight;
252                 matches_for_player[player_map[pl1]].push_back(m1);
253
254                 match m2;
255                 m2.other_player = player_map[pl1];
256                 m2.margin = score2 - score1;
257                 m2.weight = weight;
258                 matches_for_player[player_map[pl2]].push_back(m2);
259         }
260
261         float mu[MAX_PLAYERS];
262         float sigma[MAX_PLAYERS];
263
264         for (int i = 0; i < num_players; ++i) {
265                 mu[i] = 1500.0f;
266                 sigma[i] = 70.0f / sqrt(2.0f);
267         }
268         renormalize(mu, sigma, num_players);
269
270         for (int j = 0; j < 1000; ++j) {
271                 float old_mu[MAX_PLAYERS];
272                 float old_sigma[MAX_PLAYERS];
273                 memcpy(old_mu, mu, sizeof(mu));
274                 memcpy(old_sigma, sigma, sizeof(sigma));
275                 for (int i = 0; i < num_players; ++i) {
276                         update_mu(mu, sigma, i, matches_for_player[i]);
277                         renormalize(mu, sigma, num_players);
278                 }
279                 update_global_sigma(mu, sigma, num_players);
280                 /* for (int i = 0; i < num_players; ++i) {
281                         update_sigma(mu, sigma, i, matches_for_player[i]);
282                         dump_scores(players, mu, sigma, num_players);
283                 } */
284
285                 float sumdiff = 0.0f;
286                 for (int i = 0; i < num_players; ++i) {
287                         sumdiff += (mu[i] - old_mu[i]) * (mu[i] - old_mu[i]);
288                         sumdiff += (sigma[i] - old_sigma[i]) * (sigma[i] - old_sigma[i]);
289                 }
290                 if (sumdiff < EPSILON) {
291                         //fprintf(stderr, "Converged after %d iterations. Stopping.\n", j);
292                         printf("%d -1\n", j + 1);
293                         break;
294                 }
295         }
296         dump_scores(players, mu, sigma, num_players);
297         //fprintf(stderr, "Optimal sigma: %f (two-player: %f)\n", sigma[0], sigma[0] * sqrt(2.0f));
298         printf("%f -2\n", sigma[0]);
299
300 //      construct_hessian(mu, sigma, num_players);
301 }